Download Free Energy Models For Houses Book in PDF and EPUB Free Download. You can read online Energy Models For Houses and write the review.

Pretty Good House provides a framework and set of guidelines for building or renovating a high-performance home that focus on its inhabitants and the environment--but keeps in mind that few people have pockets deep enough to achieve a "perfect" solution. The essential idea is for homeowners to work within their financial and practical constraints both to meet their own needs and do as much for the planet as possible. A Pretty Good House is: * A house that's as small as possible * Simple and durable, but also well designed * Insulated and air-sealed * Above all, it is affordable, healthy, responsible, and resilient.
IBACOS analyzed pre-retrofit daily utility data to sort homes by energy consumption, allowing for better targeting of homes for physical audits. Following ASHRAE Guideline 14 normalization procedures, electricity consumption of 1,166 all electric production-built homes' was modeled. The homes were in two communities -- one built in the 1970s and the other in the mid-2000s.
Effective building performance simulation can reduce the environmental impact of the built environment, improve indoor quality and productivity, and facilitate future innovation and technological progress in construction. It draws on many disciplines, including physics, mathematics, material science, biophysics and human behavioural, environmental and computational sciences. The discipline itself is continuously evolving and maturing, and improvements in model robustness and fidelity are constantly being made. This has sparked a new agenda focusing on the effectiveness of simulation in building life-cycle processes. Building Performance Simulation for Design and Operation begins with an introduction to the concepts of performance indicators and targets, followed by a discussion on the role of building simulation in performance-based building design and operation. This sets the ground for in-depth discussion of performance prediction for energy demand, indoor environmental quality (including thermal, visual, indoor air quality and moisture phenomena), HVAC and renewable system performance, urban level modelling, building operational optimization and automation. Produced in cooperation with the International Building Performance Simulation Association (IBPSA), and featuring contributions from fourteen internationally recognised experts in this field, this book provides a unique and comprehensive overview of building performance simulation for the complete building life-cycle from conception to demolition. It is primarily intended for advanced students in building services engineering, and in architectural, environmental or mechanical engineering; and will be useful for building and systems designers and operators.
Sustainable Advanced Solar Passive House provides a platform to disseminate knowledge regarding the basics of solar energy, heat transfer, and solar houses, including designing concepts. Apart from a brief introduction to solar physics and thermodynamics, the book primarily deals with the technical description of solar houses and associated concepts. Different types of photovoltaic modules and their integration with the buildings are discussed with case studies, including energy balance equations and fundamental energy matrices. It discusses concepts like energy matrices, solar passive heating/cooling, architecture design, low-cost building, energy/exergy analysis, building integrated photovoltaic, and energy conservation.
This textbook teaches the fundamentals of building energy modeling and analysis using open source example applications built with the US DOE’s OpenStudio modeling platform and EnergyPlus simulation engine. Designed by researchers at US National Laboratories to support a new generation of high performance buildings, EnergyPlus and OpenStudio are revolutionizing how building energy modeling is taught in universities and applied by professional architects and engineers around the world. The authors, all researchers at National Renewable Energy Laboratory and members of the OpenStudio software development team, present modeling concepts using open source software that may be generally applied using a variety of software tools commonly used by design professionals. The book also discusses modeling process automation in the context of OpenStudio Measures—small self-contained scripts that can transform energy models and their data—to save time and effort. They illustrate key concepts through a sophisticated example problem that evolves in complexity throughout the book. The text also examines advanced topics including daylighting, parametric analysis, uncertainty analysis, design optimization, and model calibration. Building Energy Modeling with OpenStudio teaches students to become sophisticated modelers rather than simply proficient software users. It supports undergraduate and graduate building energy courses in Architecture, and in Mechanical, Civil, Architectural, and Sustainability Engineering.
This book offers a practical guide to embedding energy modelling in architectural practice. With expert contributions from leading architects and practices, this book illustrates architects’ approaches to learning, sharing and integrating energy modelling across a range of design projects, in both small and large firms in the UK and internationally. Discussing the practical and business implications of embedding energy modelling in practice, this is an essential manual for the energy-literate architect.