Download Free Energy Level Alignment In Metal Oxide Semiconductor And Organic Dye Oxide Systems Book in PDF and EPUB Free Download. You can read online Energy Level Alignment In Metal Oxide Semiconductor And Organic Dye Oxide Systems and write the review.

The alignment between the energy levels of the constituent materials of metal-oxide-semiconductor field effect transistors (MOSFET's) and dye sensitized solar cell (DSSC's) is a key property that is critical to the functions of these devices. We have measured the energy level alignment (band offsets) for metal/oxide/semiconductor (MOS) systems with high-k gate oxides and metal gates, and for organic dye/oxide systems. The combination of UV photoemission spectroscopy (UPS) and inverse photoemission spectroscopy (IPS) in the same vacuum system was used to measure both the occupied and unoccupied density of states (DOS), respectively, of these materials systems. Additional soft X-ray photoemission spectroscopy (SXPS) measurements were made of both the valence bands and core levels of the high-k systems. The combination of the UPS, IPS and SXPS measurements were used to determine the band offsets between the high-k oxides and the Si substrates of thin film oxide/Si samples. To find the metal-oxide band offsets, thin metal layers were sequentially deposited on the oxide surfaces, followed by spectroscopic measurements. These measurements, combined with the measurements from the clean oxide surfaces, were used to find the metal-oxide band offsets. Metal-oxide band offset values were also calculated by the Interface Gap State (IGS) model. We compared the experimental metal-oxide conduction band offset (CBO) values with those calculated using the IGS model, and found that they tended to agree well for Ru/oxide and Ti/oxide systems, but not as well for Al/oxide systems. Through core level spectroscopy, we correlated observations of the composition of the metallic layers with the trends in agreement between the experimental and IGS CBO values, which led to the conclusion that the IGS model gives accurate values for the CBO for systems with chemically abrupt interfaces. Core level spectroscopy of the MOS systems also showed that Al and Ti overlayers reduced the interfacial SiO2 layers of HfO2/SiO2/Si and Hf0:7Si0:3O2/SiO2/Si systems, while leaving the composition of high-k layers essentially unchanged. We also measured the energy level alignment for 3 organic dye/oxide systems, N3 dye on rutile TiO2(110), N3 dye on anatase TiO2 nanoparticle, and N3 dye on epitaxial ZnO(1120) film substrates. For the N3/TiO2(110) system, we found the the N3 highest occupied molecular orbital (HOMO) was 0.9 eV above the TiO2 valence band maximum (VBM) and the N3 lowest unoccupied molecular orbital (LUMO) was 0.5 eV above the TiO2 conduction band minimum (CBM). The energy level alignment for the N3/TiO2 nanoparticle system was similar to that for N3/TiO2(110). The alignment between the N3 HOMO and oxide VBM for the N3/ZnO systems was found to be similar to those of the N3/TiO2 systems, whereas the alignment between the N3 LUMO and oxide CBM alignment was found to differ markedly between the N3/ZnO and the respective N3/TiO2 systems. The difference in the LUMO-CBM alignments is attributed to the different interactions between the N3 LUMO and the ZnO and TiO2 conduction bands. In addition, we measure the energy level alignment for a prototype dye molecule, isonicotinic acid (INA), on TiO2(110) and ZnO substrates. These measurements showed that the LUMO of INA is similar to that of N3, and that the HOMO of INA is much different than that of N3, in keeping with expectations based on the compositions and theoretical electronic structures of these molecules.
Modern devices such as organic light emitting diodes use organic/oxide and organic/metal interfaces for crucial processes such as charge injection and charge transfer. Understanding fundamental physical processes occurring at these interfaces is essential to improving device performance. The ultimate goal of studying such interfaces is to form a predictive model of interfacial interactions, which has not yet been established. To this end, this thesis focuses on obtaining a better understanding of fundamental physical interactions governing molecular self-assembly and electronic energy level alignment at organic/metal and organic/oxide interfaces. This is accomplished by investigating both the molecular adsorption geometry using scanning tunneling microscopy, as well as the electronic structure at the interface using direct and inverse photoemission spectroscopy, and analyzing the results in the context of first principles electronic structure calculations. First, we study the adsorption geometry of zinc tetraphenylporphyrin (ZnTPP) molecules on three noble metal surfaces: Au(111), Ag(111), and Ag(100). These surfaces were chosen to systematically compare the molecular self-assembly and adsorption behavior on two metals of the same surface symmetry and two surface symmetries of one metal. From this investigation, we improve the understanding of self-assembly at organic/metal interfaces and the relative strengths of competing intermolecular and molecule-substrate interactions that influence molecular adsorption geometry. We then investigate the electronic structure of the ZnTPP/Au(111), Ag(111), and Ag(100) interfaces as examples of weakly-interacting systems. We compare these cases to ZnTPP on TiO2(110), a wide-bandgap oxide semiconductor, and explain the intermolecular and molecule-substrate interactions that determine the electronic energy level alignment at the interface. Finally we study tetracyanoquinodimethane (TCNQ), a strong electron acceptor, on TiO2(110), which exhibits chemical hybridization accompanied by molecular distortion, as well as extreme charge transfer resulting in the development of a space charge layer in the oxide. Thus, we present a broad experimental and theoretical perspective on the study of organic/metal and organic/oxide interfaces, elucidating fundamental physical interactions that govern molecular organization and energy level alignment.
This book is your graduate level entrance into battery, fuel cell and solar cell research at synchrotron x-ray sources and free electron lasers. Materials scientists find numerous examples for the combination of electrochemical experiments with simple and with highly complex x-ray scattering and spectroscopy methods. Physicists and chemists can link applied electrochemistry with fundamental concepts of condensed matter physics, physical chemistry and surface science.
Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions
This book describes the basic physical principles of the oxide/semiconductor epitaxy and offers a view of the current state of the field. It shows how this technology enables large-scale integration of oxide electronic and photonic devices and describes possible hybrid semiconductor/oxide systems. The book incorporates both theoretical and experimental advances to explore the heteroepitaxy of tuned functional oxides and semiconductors to identify material, device and characterization challenges and to present the incredible potential in the realization of multifunctional devices and monolithic integration of materials and devices. Intended for a multidisciplined audience, Integration of Functional Oxides with Semiconductors describes processing techniques that enable atomic-level control of stoichiometry and structure and reviews characterization techniques for films, interfaces and device performance parameters. Fundamental challenges involved in joining covalent and ionic systems, chemical interactions at interfaces, multi-element materials that are sensitive to atomic-level compositional and structural changes are discussed in the context of the latest literature. Magnetic, ferroelectric and piezoelectric materials and the coupling between them will also be discussed. GaN, SiC, Si, GaAs and Ge semiconductors are covered within the context of optimizing next-generation device performance for monolithic device processing.
Metal Oxide Semiconductors Up-to-date resource highlighting highlights emerging applications of metal oxide semiconductors in various areas and current challenges and directions in commercialization Metal Oxide Semiconductors provides a current understanding of oxide semiconductors, covering fundamentals, synthesizing methods, and applications in diodes, thin-film transistors, gas sensors, solar cells, and more. The text presents state-of-the-art information along with fundamental prerequisites for understanding and discusses the current challenges in pursuing commercialization and future directions of this field. Despite rapid advancements in the materials science and device physics of oxide semiconductors over the past decade, the understanding of science and technology in this field remains incomplete due to its relatively short research history; this book aims to bridge the gap between the rapidly advancing research progress in this field and the demand for relevant materials and devices by researchers, engineers, and students. Written by three highly qualified authors, Metal Oxide Semiconductors discusses sample topics such as: Fabrication techniques and principles, covering vacuum-based methods, including sputtering, atomic layer deposition and evaporation, and solution-based methods Fundamentals, progresses, and potentials of p–n heterojunction diodes, Schottky diodes, metal-insulator-semiconductor diodes, and self-switching diodes Applications in thin-film transistors, detailing the current progresses and challenges towards commercialization for n-type TFTs, p-type TFTs, and circuits Detailed discussions on the working mechanisms and representative devices of oxide-based gas sensors, pressure sensors, and PH sensors Applications in optoelectronics, both in solar cells and ultraviolet photodetectors, covering their parameters, materials, and performance Memory applications, including resistive random-access memory, transistor-structured memory devices, transistor-structured artificial synapse, and optical memory transistors A comprehensive monograph covering all aspects of oxide semiconductors, Metal Oxide Semiconductors is an essential resource for materials scientists, electronics engineers, semiconductor physicists, and professionals in the semiconductor and sensor industries who wish to understand all modern developments that have been made in the field.
This handbook delivers an up-to-date, comprehensive and authoritative coverage of the broad field of surface science, encompassing a range of important materials such metals, semiconductors, insulators, ultrathin films and supported nanoobjects. Over 100 experts from all branches of experiment and theory review in 39 chapters all major aspects of solid-state surfaces, from basic principles to applications, including the latest, ground-breaking research results. Beginning with the fundamental background of kinetics and thermodynamics at surfaces, the handbook leads the reader through the basics of crystallographic structures and electronic properties, to the advanced topics at the forefront of current research. These include but are not limited to novel applications in nanoelectronics, nanomechanical devices, plasmonics, carbon films, catalysis, and biology. The handbook is an ideal reference guide and instructional aid for a wide range of physicists, chemists, materials scientists and engineers active throughout academic and industrial research.
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
Comprehensive Energy Systems, Seven Volume Set provides a unified source of information covering the entire spectrum of energy, one of the most significant issues humanity has to face. This comprehensive book describes traditional and novel energy systems, from single generation to multi-generation, also covering theory and applications. In addition, it also presents high-level coverage on energy policies, strategies, environmental impacts and sustainable development. No other published work covers such breadth of topics in similar depth. High-level sections include Energy Fundamentals, Energy Materials, Energy Production, Energy Conversion, and Energy Management. Offers the most comprehensive resource available on the topic of energy systems Presents an authoritative resource authored and edited by leading experts in the field Consolidates information currently scattered in publications from different research fields (engineering as well as physics, chemistry, environmental sciences and economics), thus ensuring a common standard and language