Download Free Energy From Nuclear Fusion Book in PDF and EPUB Free Download. You can read online Energy From Nuclear Fusion and write the review.

Energy from Nuclear Fusion explores a range of issues relevant to the use of nuclear fusion as a potential solution to the energy problem. Prof. Dunlap assesses the viability of nuclear fusion as a component of our future energy mix, contextualising his discussion of nuclear fusion as an energy source through a comprehensive review of our current and future energy requirements. The book also considers alternatives to nuclear fusion alongside issues pertaining to the commercial application of nuclear-based solutions. Intended for upper-level undergraduate science and engineering students, as well as non-specialist graduate students and professionals looking for a scientifically-based overview of nuclear fusion power, Energy from Nuclear Fusion bridges the gap between descriptive texts and those intended for specialists, providing an accessible reference for anyone interested in nuclear fusion as a carbon-free energy solution. Key Features Provides a broad overview of the physics of fusion energy including both mainstream and alternative approaches Takes a rigorous scientific approach that is informative whilst remaining accessible to science/engineering students and researchers that are not specialists in the field Discusses energy from nuclear fusion in the context of our future energy needs and other alternative energy options Provides an objective discussion of the viability of nuclear fusion as a future source of energy Written by an experienced author of twelve other books
This textbook accommodates the two divergent developmental paths which have become solidly established in the field of fusion energy: the process of sequential tokamak development toward a prototype and the need for a more fundamental and integrative research approach before costly design choices are made.Emphasis is placed on the development of physically coherent and mathematically clear characterizations of the scientific and technological foundations of fusion energy which are specifically suitable for a first course on the subject. Of interest, therefore, are selected aspects of nuclear physics, electromagnetics, plasma physics, reaction dynamics, materials science, and engineering systems, all brought together to form an integrated perspective on nuclear fusion and its practical utilization.The book identifies several distinct themes. The first is concerned with preliminary and introductory topics which relate to the basic and relevant physical processes associated with nuclear fusion. Then, the authors undertake an analysis of magnetically confined, inertially confined, and low-temperature fusion energy concepts. Subsequently, they introduce the important blanket domains surrounding the fusion core and discuss synergetic fusion-fission systems. Finally, they consider selected conceptual and technological subjects germane to the continuing development of fusion energy systems.
Power production and its consumption and distribution are among the most urgent problems of mankind. Despite positive dynamics in introducing renewable sources of energy, nuclear power plants still remain the major source of carbon-free electric energy. Fusion can be an alternative to fission in the foreseeable future. Research in the field of controlled nuclear fusion has been ongoing for almost 100 years. Magnetic confinement systems are the most promising for effective implementation, and the International Thermonuclear Experimental Reactor is under construction in France. To accomplish nuclear fusion on Earth, we have to resolve a number of scientific and technological problems. This monograph includes selected chapters on nuclear physics and mechanical engineering within the scope of nuclear fusion.
There has been an increase in interest worldwide in fusion research over the last decade and a half due to the recognition that a large number of new, environmentally attractive, sustainable energy sources will be needed to meet ever increasing demand for electrical energy. Based on a series of course notes from graduate courses in plasma physics and fusion energy at MIT, the text begins with an overview of world energy needs, current methods of energy generation, and the potential role that fusion may play in the future. It covers energy issues such as the production of fusion power, power balance, the design of a simple fusion reactor and the basic plasma physics issues faced by the developers of fusion power. This book is suitable for graduate students and researchers working in applied physics and nuclear engineering. A large number of problems accumulated over two decades of teaching are included to aid understanding.
How physicists are trying to solve our energy problems—by unlocking the secrets of the sun: “Explain[s] cutting-edge science with remarkable lucidity.” —Booklist This revelatory book tells the story of the scientists who believe the solution to the planet’s ills can be found in the original energy source: the Sun itself. There, at its center, the fusion of 620 million tons of hydrogen every second generates an unfathomable amount of energy. By replicating even a tiny piece of the Sun’s power on Earth, we can secure all the heat and energy we would ever need. The simple yet extraordinary ambition of nuclear-fusion scientists has garnered many skeptics, but, as A Piece of the Sun makes clear, large-scale nuclear fusion is scientifically possible—and perhaps even preferable to other options. Clery argues passionately and eloquently that the only thing keeping us from harnessing this cheap, clean and renewable energy is our own shortsightedness. “Surprisingly sprightly…Clery walks readers through the history of fusion study, from Lord Kelvin, Albert Einstein and a large cast of peculiar physicists, to all manner of international politics—e.g., the darts and feints of the Cold War, the braces applied by OPEC in the wake of the 1973 war among Israel, Egypt and Syria. Clery negotiates the hard science with aplomb.” —Kirkus Reviews “A timely perspective on truly urgent science.” —Booklist “Ultimately, Clery argues that developing a source of energy that won’t damage the climate—or ever run out—is worth striving for.” —Publishers Weekly
The pursuit of nuclear fusion as an energy source requires a broad knowledge of several disciplines. These include plasma physics, atomic physics, electromagnetics, materials science, computational modeling, superconducting magnet technology, accelerators, lasers, and health physics. Nuclear Fusion distills and combines these disparate subjects to create a concise and coherent foundation to both fusion science and technology. It examines all aspects of physics and technology underlying the major magnetic and inertial confinement approaches to developing nuclear fusion energy. It further chronicles latest developments in the field, and reflects the multi-faceted nature of fusion research, preparing advanced undergraduate and graduate students in physics and engineering to launch into successful and diverse fusion-related research. Nuclear Fusion reflects Dr. Morse’s research in both magnetic and inertial confinement fusion, working with the world’s top laboratories, and embodies his extensive thirty-five year career in teaching three courses in fusion plasma physics and fusion technology at University of California, Berkeley.
This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste management. The book also contains a discussion of the biological effects of nuclear radiation and of radiation protection, and a summary of the ten most relevant nuclear accidents. The book is suitable for undergraduates in physics, nuclear engineering and other science subjects. However, the mathematics is kept at a level that can be easily followed by wider circles of readers. The addition of solved problems, strategically placed throughout the text, and the collections of problems at the end of the chapters allow readers to appreciate the quantitative aspects of various phenomena and processes. Many illustrations and graphs effectively supplement the text and help visualising specific points.
'The text provides an interesting history of previous and anticipated accomplishments, ending with a chapter on the relationship of fusion power to nuclear weaponry. They conclude on an optimistic note, well worth being understood by the general public.'CHOICEThe gap between the state of fusion energy research and public understanding is vast. In an entertaining and engaging narrative, this popular science book gives readers the basic tools to understand how fusion works, its potential, and contemporary research problems.Written by two young researchers in the field, The Future of Fusion Energy explains how physical laws and the Earth's energy resources motivate the current fusion program — a program that is approaching a critical point. The world's largest science project and biggest ever fusion reactor, ITER, is nearing completion. Its success could trigger a worldwide race to build a power plant, but failure could delay fusion by decades. To these ends, this book details how ITER's results could be used to design an economically competitive power plant as well as some of the many alternative fusion concepts.
This book offers a detailed examination of the latest work on the potential of polarized fuel to realize the vision of energy production by nuclear fusion. It brings together contributions from nuclear physicists and fusion physicists with the aims of fostering exchange of information between the two communities, describing the current status in the field, and examining new ideas and projects under development. It is evident that polarized fuel can offer huge improvements for the first generation of fusion reactors and open new technological possibilities for future generations, including neutron lean reactors, which could be the most popular and sustainable energy production option to avoid environmental problems. Nevertheless, many questions must be resolved before polarized fuel can be used for energy production in the different reactor types. Readers will find this book to be a stimulating source of information on the key issues. It is based on contributions from leading scientists delivered at the meetings “Nuclear Fusion with Polarized Nucleons” (Trento, November 2013) and “PolFusion” (Ferrara, July 2015).
This reference book provides a review of the physics of fusion energy, a discussion of the progress in the development of a commercial fusion reactor and an assessment of the viability of nuclear fusion as a component of our future energy mix. The level of the book is both accessible and informative, being aimed at upper-level undergraduate science and engineering students, as well as graduate students and professionals who are not specialists in the field but who want a scientifically based overview of nuclear fusion power. The book will fill the gap between lower-level books, which provide primarily descriptive treatments of nuclear fusion, and those intended for specialists.