Download Free Energy Efficient Smart Temperature Sensors In Cmos Technology Book in PDF and EPUB Free Download. You can read online Energy Efficient Smart Temperature Sensors In Cmos Technology and write the review.

This book describes the design and implementation of energy-efficient smart (digital output) temperature sensors in CMOS technology. To accomplish this, a new readout topology, namely the zoom-ADC, is presented. It combines a coarse SAR-ADC with a fine Sigma-Delta (SD) ADC. The digital result obtained from the coarse ADC is used to set the reference levels of the SD-ADC, thereby zooming its full-scale range into a small region around the input signal. This technique considerably reduces the SD-ADC’s full-scale range, and notably relaxes the number of clock cycles needed for a given resolution, as well as the DC-gain and swing of the loop-filter. Both conversion time and power-efficiency can be improved, which results in a substantial improvement in energy-efficiency. Two BJT-based sensor prototypes based on 1st-order and 2nd-order zoom-ADCs are presented. They both achieve inaccuracies of less than ±0.2°C over the military temperature range (-55°C to 125°C). A prototype capable of sensing temperatures up to 200°C is also presented. As an alternative to BJTs, sensors based on dynamic threshold MOSTs (DTMOSTs) are also presented. It is shown that DTMOSTs are capable of achieving low inaccuracy (±0.4°C over the military temperature range) as well as sub-1V operation, making them well suited for use in modern CMOS processes.
This book describes the background, principles, implementations, characterization, and future trends of temperature sensors made from silicon resistors in CMOS technology, including their readout circuits. Readers will benefit from the latest research of CMOS temperature sensors, and could learn about various precision analog techniques such as phase detection, continuous-time ΔΣ ADC, zoom ADC, FIR-DAC, dynamic element matching, OTA linearization, etc.
Microfluidics represent great potential for chemical processes design, development, optimization, and chemical engineering bolsters the project design of industrial processes often found in large chemical plants. Together, microfluidics and chemical engineering can lead to a more complete and comprehensive process. Process Analysis, Design, and Intensification in Microfluidics and Chemical Engineering provides emerging research exploring the theoretical and practical aspects of microfluidics and its application in chemical engineering with the intention of building pathways for new processes and product developments in industrial areas. Featuring coverage on a broad range of topics such as design techniques, hydrodynamics, and numerical modelling, this book is ideally designed for engineers, chemists, microfluidics and chemical engineering companies, academicians, researchers, and students.
Electronic Devices, Circuits, and Systems for Biomedical Applications: Challenges and Intelligent Approaches explains the latest information on the design of new technological solutions for low-power, high-speed efficient biomedical devices, circuits and systems. The book outlines new methods to enhance system performance, provides key parameters to explore the electronic devices and circuit biomedical applications, and discusses innovative materials that improve device performance, even for those with smaller dimensions and lower costs. This book is ideal for graduate students in biomedical engineering and medical informatics, biomedical engineers, medical device designers, and researchers in signal processing. - Presents major design challenges and research potential in biomedical systems - Walks readers through essential concepts in advanced biomedical system design - Focuses on healthcare system design for low power-efficient and highly-secured biomedical electronics
This book describes the use of low-power low-cost and extremely small radios to provide essential time reference for wireless sensor networks. The authors explain how to integrate such radios in a standard CMOS process to reduce both cost and size, while focusing on the challenge of designing a fully integrated time reference for such radios. To enable the integration of the time reference, system techniques are proposed and analyzed, several kinds of integrated time references are reviewed, and mobility-based references are identified as viable candidates to provide the required accuracy at low-power consumption. Practical implementations of a mobility-based oscillator and a temperature sensor are also presented, which demonstrate the required accuracy over a wide temperature range, while drawing 51-uW from a 1.2-V supply in a 65-nm CMOS process.
This book describes the analysis and design of precision temperature sensors in CMOS IC technology, focusing on so-called smart temperature sensors, which provide a digital output signal that can be readily interpreted by a computer. The text shows how temperature characteristics can be used to obtain an accurate digital temperature reading. The book ends with a detailed description of three prototypes, one of which achieves the best performance reported to date.
This book describes an alternative method of realizing accurate on-chip frequency references in standard CMOS processes. This method exploits the thermal-diffusivity of silicon, i.e. the rate at which heat diffuses through a silicon substrate. This is the first book describing the design of such electrothermal frequency references. It includes the necessary theory, supported by practical realizations that achieve inaccuracies as low as 0.1% and thus demonstrate the feasibility of this approach. The book also includes several circuit and system-level solutions to the precision circuit design challenges encountered during the design of such frequency references.
This book is based on the 18 tutorials presented during the 26th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, with specific contributions focusing on hybrid ADCs, smart sensors for the IoT, sub-1V and advanced-node analog circuit design. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.
This book is a printed edition of the Special Issue "Interface Circuits for Microsensor Integrated Systems" that was published in Micromachines
Thermal Sensors is intended as a comprehensive and accessible reference for designers and users of thermal sensors. Many different physical quantities can be converted easily and accurately into temperature differences using thermal techniques. These temperature differences can be detected with temperature and temperature-difference sensors. In a thermal sensor the thermal converter and the temperature sensor are combined in a single accurate device. This book gives an overview and deals with the design aspects of thermal and temperature sensors, with an emphasis on sensors based on silicon technology. The temperature sensors described are based on the use of various types of sensitive elements, such as platinum resistors, thermistors and special integrated circuits. The thermal sensors described include flow, conductivity, infrared, vacuum, humidity and calorimetric sensors, and ac-dc converters, thus providing a comprehensive overview of all thermal sensors, with practical examples of each type.