Download Free Energy Efficiency Through Combined Heat And Power Or Cogeneration Book in PDF and EPUB Free Download. You can read online Energy Efficiency Through Combined Heat And Power Or Cogeneration and write the review.

Combined Heat and Power Generation is a concise, up-to-date and accessible guide to the combined delivery of heat and power to anything, from a single home to a municipal power plant. Breeze discusses the historical background for CHP and why it is set to be a key emission control strategy for the 21st Century. Various technologies such as piston engines, gas turbines and fuel cells are discussed. Economic and environmental factors also are considered and analyzed, making this a very valuable resource for those involved with the research, design, implementation and management of the provision of heat and power. - Discusses the historical background of combined heat and power usage and why CHP is seen as a key emission control strategy for the 21st Century - Explores the technological aspects of CHP in a clear and concise style and delves into various key technologies, such as piston engines, steam and gas turbines and fuel cells - Evaluates the economic factors of CHP and the installation of generation systems, along with energy conversion efficiencies
Small and micro combined heat and power (CHP) systems are a form of cogeneration technology suitable for domestic and community buildings, commercial establishments and industrial facilities, as well as local heat networks. One of the benefits of using cogeneration plant is a vastly improved energy efficiency: in some cases achieving up to 80–90% systems efficiency, whereas small-scale electricity production is typically at well below 40% efficiency, using the same amount of fuel. This higher efficiency affords users greater energy security and increased long-term sustainability of energy resources, while lower overall emissions levels also contribute to an improved environmental performance.Small and micro combined heat and power (CHP) systems provides a systematic and comprehensive review of the technological and practical developments of small and micro CHP systems.Part one opens with reviews of small and micro CHP systems and their techno-economic and performance assessment, as well as their integration into distributed energy systems and their increasing utilisation of biomass fuels. Part two focuses on the development of different types of CHP technology, including internal combustion and reciprocating engines, gas turbines and microturbines, Stirling engines, organic Rankine cycle process and fuel cell systems. Heat-activated cooling (i.e. trigeneration) technologies and energy storage systems, of importance to the regional/seasonal viability of this technology round out this section. Finally, part three covers the range of applications of small and micro CHP systems, from residential buildings and district heating, to commercial buildings and industrial applications, as well as reviewing the market deployment of this important technology.With its distinguished editor and international team of expert contributors, Small and micro combined heat and power (CHP) systems is an essential reference work for anyone involved or interested in the design, development, installation and optimisation of small and micro CHP systems. - Reviews small- and micro-CHP systems and their techno-economic and performance assessment - Explores integration into distributed energy systems and their increasing utilisation of biomass fuels - Focuses on the development of different types of CHP technology, including internal combustion and reciprocating engines
Unconventional energy sources have gained and will continue to gain an increasing share of energy systems around the world. Today, hydrogen is recognized as a non-polluting energy carrier because it does not contribute to global warming if it is produced from renewable sources. Hydrogen is already part of today's chemical industry, but as an energy source, its rare advantages can only be obtained with the help of technologies. Currently, the fuel cell is considered the cleanest sustainable energy. With the development of fuel cells, hydrogen-based energy generation becomes a reality. Hydrogen Fuel Cell Technology for Stationary Applications is an essential publication that focuses on the advantages of hydrogen as a primary energy center and addresses its use in the sustainable future of stationary applications. While highlighting a broad range of topics including cost expectations, production methods, and social impact, this publication explores all aspects of the implementation and dissemination of fuel cell technology in the hope of establishing a sustainable marketplace for it. This book is ideally designed for fuel cell manufacturers, architects, electrical engineers, civil engineers, environmental engineers, advocates, manufacturers, mechanics, researchers, academicians, and students.
The availability of fossil fuels required for power plants is reducing and their costs increasing rapidly. This gives rise to increase in the cost of generation of electricity. But electricity regulators have to control the price of electricity so that consumers are not stressed with high costs. In addition, environmental considerations are forcing power plants to reduce CO2 emissions. Under these circumstances, power plants are constantly under pressure to improve the efficiency of operating plants, and to reduce fuel consumption. In order to progress in this direction, it is important that power plants regularly audit their energy use in terms of the operating plant heat rate and auxiliary power consumption. Energy Audit of Thermal Power, Combined Cycle, and Cogeneration Plants attempts to refresh the fundamentals of the science and engineering of thermal power plants, and establishes its link with the real power plant performance data through case studies, and further developing techno-economics of the energy efficiency improvement measures. This book will rekindle interest in energy audits and analysis of the data for designing and implementation of energy conservation measures on a continuous basis.
This book provides an analysis of the European policy approach to combined heat and power (CHP), a highly efficient technology used by all EU Member States for the needs of generating electricity and heat. European Law on Combined Heat and Power carries out an assessment of the European legal and policy measures on CHP, evaluating how it has changed over the years through progress and decline in specific member states. Over the course of the book, Sokołowski explores all aspects of CHP, examining the types of measures used to steer the growth of cogeneration in the EU and the policies and regulatory tools that have influenced its development. He also assesses the specific role of CHP in the liberalisation of the internal energy market and EU action on climate and sustainability. Finally, by delivering his notions of "cogenatives", "cogenmunities", or "Micro-Collective-Flexible-Smart-High-Efficiency cogeneration", Sokołowski considers how the new EU energy package – "Clean energy for all Europeans" – will shape future developments. This book will be of great interest to students and scholars of energy law and regulation, combined heat and power and energy efficiency, as well as policy makers and energy experts working in the CHP sector.
This text provides an introduction to all aspects of combined heat and power (CHP) thermodynamics, design, economics and utilization. Emphasis is placed on the performance of CHP plants compared to conventional plants, and the economic considerations in combined heat and power utilization. There are many CHP installations in commission and, where applicable, the text describes practical examples of CHP use.
This book presents a comprehensive, integrated treatment of cogeneration technologies and systems. Also called combined heat and power (CHP), cogeneration is the use of a power station to deliver two or more useful forms of energy (e.g. generating electricity and heat at the same time). All conventional, fuel-based plants generate heat as by-product, which is often wasted. Cogeneration captures part of this heat for delivery to consumers. The book gives a tour of the available cogeneration technologies and their features. It provides plenty of instructive examples of cogeneration projects to illustrate key concepts, and also covers the relevant regulatory and legal frameworks. It is an ideal text/reference for anyone working in power systems and energy engineering. Topics covered include: * Benefits of cogeneration * Cogeneration technologies * Electrical engineering aspects * Applications of cogeneration * Fuels for cogeneration systems * Thermodynamic analysis * Environmental impacts of cogeneration * Reliability and availability * Economic analysis of cogeneration systems * Regulatory and legal frameworks * Selection, integration and operation of cogeneration systems * Simulation and optimisation * Synthesis, design and operation * Examples of cogeneration projects * Research and development of cogeneration * Summary and conclusions
PROVEN TECHNIQUES FOR REDUCING ENERGY USE WITH CHP SYSTEMS Plan, design, construct, and operate a sustainable on-site CHP (combined heat and power) facility using the detailed information in this practical guide. Sustainable On-Site CHP Systems reveals how to substantially increase the energy efficiency in commercial, industrial, institutional, and residential buildings using waste heat and thermal energy from power generation equipment for cooling, heating, and humidity control. In-depth case studies illustrate real-world applications of CHP systems. Coverage includes: CHP basics, power equipment, and thermal design Packaged CHP systems Regulatory issues Carbon footprint, environmental benefits, and emission controls Conducting a feasibility study and economic analysis CHP plant design and engineering Construction, permits, and risk management Operation and maintenance Performance monitoring and improvement
This book makes intelligible the wide range of electricity generating technologies available today, as well as some closely allied technologies such as energy storage. The book opens by setting the many power generation technologies in the context of global energy consumption, the development of the electricity generation industry and the economics involved in this sector. A series of chapters are each devoted to assessing the environmental and economic impact of a single technology, including conventional technologies, nuclear and renewable (such as solar, wind and hydropower). The technologies are presented in an easily digestible form.Different power generation technologies have different greenhouse gas emissions and the link between greenhouse gases and global warming is a highly topical environmental and political issue. With developed nations worldwide looking to reduce their emissions of carbon dioxide, it is becoming increasingly important to explore the effectiveness of a mix of energy generation technologies.Power Generation Technologies gives a clear, unbiased review and comparison of the different types of power generation technologies available. In the light of the Kyoto protocol and OSPAR updates, Power Generation Technologies will provide an invaluable reference text for power generation planners, facility managers, consultants, policy makers and economists, as well as students and lecturers of related Engineering courses.· Provides a unique comparison of a wide range of power generation technologies - conventional, nuclear and renewable· Describes the workings and environmental impact of each technology· Evaluates the economic viability of each different power generation system
Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications provides a systematic and detailed description of organic Rankine cycle technologies and the way they are increasingly of interest for cost-effective sustainable energy generation. Popular applications include cogeneration from biomass and electricity generation from geothermal reservoirs and concentrating solar power installations, as well as waste heat recovery from gas turbines, internal combustion engines and medium- and low-temperature industrial processes. With hundreds of ORC power systems already in operation and the market growing at a fast pace, this is an active and engaging area of scientific research and technical development. The book is structured in three main parts: (i) Introduction to ORC Power Systems, Design and Optimization, (ii) ORC Plant Components, and (iii) Fields of Application. - Provides a thorough introduction to ORC power systems - Contains detailed chapters on ORC plant components - Includes a section focusing on ORC design and optimization - Reviews key applications of ORC technologies, including cogeneration from biomass, electricity generation from geothermal reservoirs and concentrating solar power installations, waste heat recovery from gas turbines, internal combustion engines and medium- and low-temperature industrial processes - Various chapters are authored by well-known specialists from Academia and ORC manufacturers