Download Free Endogenous Stem Cell Based Brain Remodeling In Mammals Book in PDF and EPUB Free Download. You can read online Endogenous Stem Cell Based Brain Remodeling In Mammals and write the review.

This text highlights the endogenous regenerative potential of the central nervous system in neonates and juveniles and discusses possible ways it might be manipulated for medical purposes. The first section provides a descriptive summary of the salient steps of human brain development with a discussion of comparisons with other mammalian brains. It also provides a historical perspective on our understanding of ongoing brain development throughout the lifespan and serve to introduce the concept of brain plasticity following injury. The second part is devoted to the endogenous reparative potential of the brain, including its limitations, and articles focusing on defined pathologies (e.g. anoxia/hypoxia, epilepsy, traumatic brain injury and stress) in animal models and in humans pinpoint eventual ways these pathologies might be manipulated. The third and final focuses on the "dark side" of stem cells for brain repair or of the manipulation of spontaneous adaptive events after injury (e.g. genomic instability, sensitization to cancerous transformation and defective neural networks).
Tissue Barriers in Disease, Injury and Regeneration focuses on the molecular and cellular fundamentals of homeostatic and defense responses of tissue barriers, covering the damaging impacts and exposure to pathogens and engineered nanomaterials. Sections emphasize the role of mesenchymal stoma, vascular, epithelial, telocyte, myofibroblast, lymphoid and reticuloendothelial cells, along with reactions that bridge the effects of ambient factors, medical treatments, drag delivery systems with alterations in barrier integrity, tissue/organ functions, and metabolic status. Other sections cover the role of progenitor cells of different origins in the remodeling and regeneration of tissue stroma, vasculature of blood-tissue barriers, and more. - Includes special emphasis on the role of mesenchymal stoma, vascular, epithelial, telocyte, myofibroblast, lymphoid and reticuloendothelial cells in the development of reactions that bridge the effects of ambient factors, medical treatments, drag delivery systems with alterations in barrier integrity, tissue/organ functions, and in metabolic status - Examines the role of progenitor cells of different origins in the remodeling and regeneration of tissue stroma, the vasculature of blood-tissue barriers, and mucosa and external epithelium
The authors present the most current and cutting-edge knowledge regarding the molecular basis of cerebellar development, focusing on information relevant to laboratory scientists and clinicians providing service to patients with cerebellar disorders. Knowledge obtained from advanced neuroimaging techniques that are used during development, and from molecular- and genetic-based studies has provided rapidly-growing evidence that the cerebellum is a brain region that is highly impacted by developmental defects. Cerebellar defects result in significant intellectual and motor function impairment that affects both the patients and their families.
This book highlights the importance of endothelial cells as key players in the functioning of the nervous system under both normal and pathological conditions. The book demonstrates that endothelial cells are an essential and dynamic cell population in the central nervous system, with multiple and complex roles, not only in the maintenance of homeo
Despite enormous advances made in the development of external effector prosthetics over the last quarter century, significant questions remain, especially those concerning signal degradation that occurs with chronically implanted neuroelectrodes. Offering contributions from pioneering researchers in neuroprosthetics and tissue repair, Indwel
Mesenchymal stem cell-derived exosomes are at the forefront of research in two of the most high profile and funded scientific areas – cardiovascular research and stem cells. Mesenchymal Stem Cell Derived Exosomes provides insight into the biofunction and molecular mechanisms, practical tools for research, and a look toward the clinical applications of this exciting phenomenon which is emerging as an effective diagnostic. Primarily focused on the cardiovascular applications where there have been the greatest advancements toward the clinic, this is the first compendium for clinical and biomedical researchers who are interested in integrating MSC-derived exosomes as a diagnostic and therapeutic tool. - Introduces the MSC-exosome mediated cell-cell communication - Covers the major functional benefits in current MSC-derived exosome studies - Discusses strategies for the use of MSC-derived exosomes in cardiovascular therapies
Stem cell science has the potential to impact human reproductive medicine significantly - cutting edge technologies allow the production and regeneration of viable gametes from human stem cells offering potential to preciously infertile patients. Written by leading experts in the field Stem Cells in Reproductive Medicine brings together chapters on the genetics and epigenetics of both the male and female gametes as well as advice on the production and regeneration of gene cells in men and women, trophoblasts and endometrium from human embryonic and adult stem cells. Although focussing mainly on the practical elements of the use of stem cells in reproductive medicine, the book also contains a section on new developments in stem cell research. The book is essential reading for reproductive medicine clinicians, gynecologists and embryologists who want to keep abreast of practical developments in this rapidly developing field.
This Volume of the series Cardiac and Vascular Biology offers a comprehensive and exciting, state-of-the-art work on the current options and potentials of cardiac regeneration and repair. Several techniques and approaches have been developed for heart failure repair: direct injection of cells, programming of scar tissue into functional myocardium, and tissue-engineered heart muscle support. The book introduces the rationale for these different approaches in cell-based heart regeneration and discusses the most important considerations for clinical translation. Expert authors discuss when, why, and how heart muscle can be salvaged. The book represents a valuable resource for stem cell researchers, cardiologists, bioengineers, and biomedical scientists studying cardiac function and regeneration.