Download Free Encyclopedia Of Metalloproteins Book in PDF and EPUB Free Download. You can read online Encyclopedia Of Metalloproteins and write the review.

In biochemistry, a metalloprotein is a generic term for a protein that contains a metal cofactor. The metal may be an isolated ion or may be coordinated with a nonprotein organic compound, such as the porphyrin found in hemoproteins. In some cases, the metal is co-coordinated with a side chain of the protein and an inorganic nonmetallic ion. This kind of protein-metal-nonmetal structure is seen in iron-sulfur clusters Metalloproteins deals with all aspects related to the intracellular and extracellular metal-binding proteins, including their structures, properties and functions. The biological roles of metal cations and metal-binding proteins are endless. They are involved in all crucial cellular activities. Many pathological conditions are related to the problematic metal metabolism. Research in metalloprotein-related topics is therefore rapidly growing, and different aspects of metal-binding proteins progressively enter curricula at Universities and even at the High School level on occasion. However, no key resource providing basic, but comprehensible knowledge on this rapidly expanding field exists. The Encyclopedia of Metalloproteins aims to bridge this gap, and will attempt to cover various aspects of metalloprotein/metalloproteomics and will deal with the different issues related to the intracellular and extracellular metal-binding proteins, including their structures, properties and functions. The goal is to cover exhaustively all catalytically and biologically crucial metal ions and to find at least one interacting protein for other metal ions. The Encyclopedia of Metalloproteins will provide a key resource for advanced undergraduate and graduate students, researchers, instructors, and professors interested in protein science, biochemistry, cell biology, and genetics.
Summarizes the essential biosynthetic pathways for assembly of metal cofactor sites in functional metalloproteins Metalloprotein Active Site Assembly focuses on the processes that have evolved to orchestrate the assembly of metal cofactor sites in functional metalloproteins. It goes beyond the simple incorporation of single metal ions in a protein framework, and includes metal cluster assembly, metal-cofactor biosynthesis and insertion, and metal-based post-translational modifications of the protein environments that are necessary for function. Several examples of each of these areas have now been identified and studied; the current volume provides the current state-of-the-art understanding of the processes involved. An excellent companion to the earlier book in this series Metals in Cells—which discussed both the positive and negative effects of cellular interactions with metals—this comprehensive book provides a diverse sampling of what is known about metalloprotein active site assembly processes. It covers all major biological transition metal components (Mn, Fe, Co, Ni, Mo), as well as the other inorganic components, metal-binding organic cofactors (e.g., heme, siroheme, cobalamin, molybdopterin), and post-translationally modified metal binding sites that make up the patchwork of evolved biological catalytic sites. The book compares and contrasts the biosynthetic assembly of active sites involving all biological metals. This has never been done before since it is a relatively new, fast-developing area of research. Metalloprotein Active Site Assembly is an ideal text for practitioners of inorganic biochemistry who are studying the biosynthetic pathways and gene clusters involved in active site assembly, and for inorganic chemists who want to apply the concepts learned to potential synthetic pathways to active site mimics.
This Handbook on Metalloproteins focuses on the available structural information of proteins and their metal ion coordination spheres. It centers on the metal ions indispensable for life but also considers metal ions used as substitution probes in studies of metalloproteins. Emphasizing the structure-function relationship, the book covers the common and distinct characterstics of metallo- enzymes, proteins, and amino acids bonded to copper, zinc, iron, and more.
The Second Edition of the Encyclopedia of Spectroscopy and Spectrometry pulls key information into a single source for quick access to answers and/or in-depth examination of topics. "SPEC-2" covers theory, methods, and applications for researchers, students, and professionals—combining proven techniques and new insights for comprehensive coverage of the field. The content is available in print and online via ScienceDirect, the latter of which offers optimal flexibility, accessibility, and usability through anytime, anywhere access for multiple users and superior search functionality. No other work gives analytical and physical (bio)chemists such unprecedented access to the literature. With 30% new content, SPEC-2 maintains the "authoritative, balanced coverage" of the original work while also breaking new ground in spectroscopic research. Incorporates more than 150 color figures, 5,000 references, and 300 articles (30% of which are new), for a thorough examination of the field Highlights new research and promotes innovation in applied areas ranging from food science and forensics to biomedicine and health Features a new co-editor: David Koppenaal of Pacific Northwest National Laboratory, Washington, USA, whose work in atomic mass spectrometry has been recognized internationally
Metalloproteins and Motor Proteins, Volume 141 focuses on recent advances in studying metalloproteins and motor proteins, along with their roles in different pathologies and drug-resistance. Chapters include Transcriptomic Analysis Reveals Zinc-Mediated Virulence and Pathogenicity in Multidrug-Resistant Acinetobacter baumannii, The Mechanistic Insights into Different Aspects of Promiscuity in Metalloenzymes, Role of Metal ion in ion channel Mechanisms, A model of microtubule depolymerization by kinesin-8 motor proteins, Metalloproteins and metalloproteomics in health and disease, Decoding Genetic and Pathophysiological Mechanisms in Amyotrophic Lateral Sclerosis and Primary Lateral Sclerosis: A Comparative Study of Differentially Expressed Genes and Implicated Pathways in Motor Neuron Disorders, and much more. Additional chapters cover Exploring the effect of disease causing mutations in metal binding sites of human ARSA in Metachromatic Leukodystrophy, Role of transmembrane proteins in regulating metalloproteins and motor proteins in human cancer, Role of transmembrane proteins in metalloproteins and motor proteinsin human neurogenesis, Role of transmembrane proteins in metalloproteins and motor proteins in human aging, Vesicle transport of metalloproteinases, Motor proteins and spermatogenesis, and much more. Integrates experimental and computational methods for studying structure and function of metalloproteins and motor proteins and their implication in drug design Presents timely chapters written by well-renowned authorities in their field Contains a high number of high quality illustrations, figures, and tables and targets a very wide audience of specialists, researchers, and students
Over the last three decades a lot of research on the role of metals in biochemistry and medicine has been done. As a result many structures of biomolecules with metals have been characterized and medicinal chemistry studied the effects of metal containing drugs. This new book (from the EIBC Book Series) covers recent advances made by top researchers in the field of metals in cells [the “metallome”] and include: regulated metal ion uptake and trafficking, sensing of metals within cells and across tissues, and identification of the vast cellular factors designed to orchestrate assembly of metal cofactor sites while minimizing toxic side reactions of metals. In addition, it features aspects of metals in disease, including the role of metals in neuro-degeneration, liver disease, and inflammation, as a way to highlight the detrimental effects of mishandling of metal trafficking and response to "foreign" metals. With the breadth of our recently acquired understanding of metals in cells, a book that features key aspects of cellular handling of inorganic elements is both timely and important. At this point in our understanding, it is worthwhile to step back and take an expansive view of how far our understanding has come, while also highlighting how much we still do not know. The content from this book will publish online, as part of EIBC in December 2013, find out more about the Encyclopedia of Inorganic and Bioinorganic Chemistry, the essential online resource for researchers and students working in all areas of inorganic and bioinorganic chemistry.
A convenient source of information for workers in analytical chemistry, experimental biology, physics, and engineering, the Encyclopedia of Chromatography, Second Edition stands as a quick reference source and clear guide to specific chromatographic techniques and principles. The book offers a basic introduction to the science and technology of the method, as well as additional references on the theory and methodology for analysis of specific chemicals and applications in a range of industries. It contains over 400 cross-referenced articles with more than 80 entirely new articles, including many new discussions on emerging technologies, instrumentation, and applications in chromatography.
Contains approximately 800 alphabetical entries, prose essays on important topics, line illustrations, and black-and-white photographs.
Advancements in science and engineering have occurred at a surprisingly rapid pace since the release of the seventh edition of this encyclopedia. Large portions of the reference have required comprehensive rewriting and new illustrations. Scores of new topics have been included to create this thoroughly updated eighth edition. The appearance of this new edition in 1994 marks the continuation of a tradition commenced well over a half-century ago in 1938 Van Nostrand's Scientific Encyclopedia, First Edition, was published and welcomed by educators worldwide at a time when what we know today as modern science was just getting underway. The early encyclopedia was well received by students and educators alike during a critical time span when science became established as a major factor in shaping the progress and economy of individual nations and at the global level. A vital need existed for a permanent science reference that could be updated periodically and made conveniently available to audiences that numbered in the millions. The pioneering VNSE met these criteria and continues today as a reliable technical information source for making private and public decisions that present a backdrop of technical alternatives.
The interplay between Geology and Biology has shaped the Earth from the early Precambrian, 4 billion years ago. Moving beyond the borders of the classical core disciplines, Geobiology strives to identify chains of cause-and-effect and synergisms between the geo- and the biospheres that have been driving the evolution of life in modern and ancient environments. Combining modern methods, geobiological information can be extracted not only from visible remains of organisms, but also from organic molecules, rock fabrics, minerals, isotopes and other tracers. An understanding of these processes and their signatures reveals enormous applied potentials with respect to issues of environment protection, public health, energy and resource management. The Encyclopedia of Geobiology has been designed to act as a key reference for students, researchers, teachers, and the informed public and to provide basic, but comprehensible knowledge on this rapidly expanding discipline that sits at the interface between modern geo- and biosciences.