Download Free Empirical Model Building Book in PDF and EPUB Free Download. You can read online Empirical Model Building and write the review.

A hands-on approach to the basic principles of empirical model building. Includes a series of real-world statistical problems illustrating modeling skills and techniques. Covers models of growth and decay, systems where competition and interaction add to the complexity of the model, and discusses both classical and nonclassical data analysis methods.
An innovative discussion of building empirical models and the fitting of surfaces to data. Introduces the general philosophy of response surface methodology, and details least squares for response surface work, factorial designs at two levels, fitting second-order models, adequacy of estimation and the use of transformation, occurrence and elucidation of ridge systems, and more. Some results are presented for the first time. Includes real-life exercises, nearly all with solutions.
Praise for the First Edition "This...novel and highly stimulating book, which emphasizes solving real problems...should be widely read. It will have a positive and lasting effect on the teaching of modeling and statistics in general." - Short Book Reviews This new edition features developments and real-world examples that showcase essential empirical modeling techniques Successful empirical model building is founded on the relationship between data and approximate representations of the real systems that generated that data. As a result, it is essential for researchers who construct these models to possess the special skills and techniques for producing results that are insightful, reliable, and useful. Empirical Model Building: Data, Models, and Reality, Second Edition presents a hands-on approach to the basic principles of empirical model building through a shrewd mixture of differential equations, computer-intensive methods, and data. The book outlines both classical and new approaches and incorporates numerous real-world statistical problems that illustrate modeling approaches that are applicable to a broad range of audiences, including applied statisticians and practicing engineers and scientists. The book continues to review models of growth and decay, systems where competition and interaction add to the complextiy of the model while discussing both classical and non-classical data analysis methods. This Second Edition now features further coverage of momentum based investing practices and resampling techniques, showcasing their importance and expediency in the real world. The author provides applications of empirical modeling, such as computer modeling of the AIDS epidemic to explain why North America has most of the AIDS cases in the First World and data-based strategies that allow individual investors to build their own investment portfolios. Throughout the book, computer-based analysis is emphasized and newly added and updated exercises allow readers to test their comprehension of the presented material. Empirical Model Building, Second Edition is a suitable book for modeling courses at the upper-undergraduate and graduate levels. It is also an excellent reference for applied statisticians and researchers who carry out quantitative modeling in their everyday work.
The authority on building empirical models and the fitting of such surfaces to data—completely updated and revised Revising and updating a volume that represents the essential source on building empirical models, George Box and Norman Draper—renowned authorities in this field—continue to set the standard with the Second Edition of Response Surfaces, Mixtures, and Ridge Analyses, providing timely new techniques, new exercises, and expanded material. A comprehensive introduction to building empirical models, this book presents the general philosophy and computational details of a number of important topics, including factorial designs at two levels; fitting first and second-order models; adequacy of estimation and the use of transformation; and occurrence and elucidation of ridge systems. Substantially rewritten, the Second Edition reflects the emergence of ridge analysis of second-order response surfaces as a very practical tool that can be easily applied in a variety of circumstances. This unique, fully developed coverage of ridge analysis—a technique for exploring quadratic response surfaces including surfaces in the space of mixture ingredients and/or subject to linear restrictions—includes MINITAB® routines for performing the calculations for any number of dimensions. Many additional figures are included in the new edition, and new exercises (many based on data from published papers) offer insight into the methods used. The exercises and their solutions provide a variety of supplementary examples of response surface use, forming an extremely important component of the text. Response Surfaces, Mixtures, and Ridge Analyses, Second Edition presents material in a logical and understandable arrangement and includes six new chapters covering an up-to-date presentation of standard ridge analysis (without restrictions); design and analysis of mixtures experiments; ridge analysis methods when there are linear restrictions in the experimental space including the mixtures experiments case, with or without further linear restrictions; and canonical reduction of second-order response surfaces in the foregoing general case. Additional features in the new edition include: New exercises with worked answers added throughout An extensive revision of Chapter 5: Blocking and Fractionating 2k Designs Additional discussion on the projection of two-level designs into lower dimensional spaces This is an ideal reference for researchers as well as a primary text for Response Surface Methodology graduate-level courses and a supplementary text for Design of Experiments courses at the upper-undergraduate and beginning-graduate levels.
Empirical research is carried out in a cyclic way: approaching a research area bottom-up, data lead to interpretations and ideally to the abstraction of laws, on the basis of which a theory can be derived. Deductive research is based on a theory, on the basis of which hypotheses can be formulated and tested against the background of empirical data. Looking at the state-of-the-art in translation studies, either theories as well as models are designed or empirical data are collected and interpreted. However, the final step is still lacking: so far, empirical data has not lead to the formulation of theories or models, whereas existing theories and models have not yet been comprehensively tested with empirical methods. This publication addresses these issues from several perspectives: multi-method product- as well as process-based research may gain insights into translation as well as interpreting phenomena. These phenomena may include cognitive and organizational processes, procedures and strategies, competence and performance, translation properties and universals, etc. Empirical findings about the deeper structures of translation and interpreting will reduce the gap between translation and interpreting practice and model and theory building. Furthermore, the availability of more large-scale empirical testing triggers the development of models and theories concerning translation and interpreting phenomena and behavior based on quantifiable, replicable and transparent data.
This instructional book showcases techniques to parameterise human agents in empirical agent-based models (ABM). In doing so, it provides a timely overview of key ABM methodologies and the most innovative approaches through a variety of empirical applications. It features cutting-edge research from leading academics and practitioners, and will provide a guide for characterising and parameterising human agents in empirical ABM. In order to facilitate learning, this text shares the valuable experiences of other modellers in particular modelling situations. Very little has been published in the area of empirical ABM, and this contributed volume will appeal to graduate-level students and researchers studying simulation modeling in economics, sociology, ecology, and trans-disciplinary studies, such as topics related to sustainability. In a similar vein to the instruction found in a cookbook, this text provides the empirical modeller with a set of 'recipes' ready to be implemented. Agent-based modeling (ABM) is a powerful, simulation-modeling technique that has seen a dramatic increase in real-world applications in recent years. In ABM, a system is modeled as a collection of autonomous decision-making entities called “agents.” Each agent individually assesses its situation and makes decisions on the basis of a set of rules. Agents may execute various behaviors appropriate for the system they represent—for example, producing, consuming, or selling. ABM is increasingly used for simulating real-world systems, such as natural resource use, transportation, public health, and conflict. Decision makers increasingly demand support that covers a multitude of indicators that can be effectively addressed using ABM. This is especially the case in situations where human behavior is identified as a critical element. As a result, ABM will only continue its rapid growth. This is the first volume in a series of books that aims to contribute to a cultural change in the community of empirical agent-based modelling. This series will bring together representational experiences and solutions in empirical agent-based modelling. Creating a platform to exchange such experiences allows comparison of solutions and facilitates learning in the empirical agent-based modelling community. Ultimately, the community requires such exchange and learning to test approaches and, thereby, to develop a robust set of techniques within the domain of empirical agent-based modelling. Based on robust and defendable methods, agent-based modelling will become a critical tool for research agencies, decision making and decision supporting agencies, and funding agencies. This series will contribute to more robust and defendable empirical agent-based modelling.
Concern about the role and the limits of modeling has heightened after repeated questions were raised regarding the dependability and suitability of the models that were used in the run-up to the 2008 financial crash. In this book, Lawrence Boland provides an overview of the practices of and the problems faced by model builders to explain the nature of models, the modeling process, and the possibility for and nature of their testing. In a reflective manner, the author raises serious questions about the assumptions and judgments that model builders make in constructing models. In making his case, he examines the traditional microeconomics-macroeconomics separation with regard to how theoretical models are built and used and how they interact, paying particular attention to the use of equilibrium concepts in macroeconomic models and game theory and to the challenges involved in building empirical models, testing models, and using models to test theoretical explanations.
Semi-empirical Neural Network Modeling presents a new approach on how to quickly construct an accurate, multilayered neural network solution of differential equations. Current neural network methods have significant disadvantages, including a lengthy learning process and single-layered neural networks built on the finite element method (FEM). The strength of the new method presented in this book is the automatic inclusion of task parameters in the final solution formula, which eliminates the need for repeated problem-solving. This is especially important for constructing individual models with unique features. The book illustrates key concepts through a large number of specific problems, both hypothetical models and practical interest. - Offers a new approach to neural networks using a unified simulation model at all stages of design and operation - Illustrates this new approach with numerous concrete examples throughout the book - Presents the methodology in separate and clearly-defined stages
Empirical modeling has been a useful approach for the analysis of different problems across numerous areas/fields of knowledge. As it is known, this type of modeling is particularly helpful when parametric models, due to various reasons, cannot be constructed. Based on different methodologies and approaches, empirical modeling allows the analyst to obtain an initial understanding of the relationships that exist among the different variables that belong to a particular system or process. In some cases, the results from empirical models can be used in order to make decisions about those variables, with the intent of resolving a given problem in the real-life applications. This book entitled Empirical Modeling and Its Applications consists of six (6) chapters.