Download Free Emerging Technologies For Waste Valorization And Environmental Protection Book in PDF and EPUB Free Download. You can read online Emerging Technologies For Waste Valorization And Environmental Protection and write the review.

This book features carefully selected articles on emerging technologies for waste valorization and environmental protection. The term “waste valorization” is used particularly in engineering, economics, technology, business, environmental and policy literature to refer to any unit operation or collection of operations targeted at reusing, recycling, composting or converting wastes into useful products or energy sources without harming the environment. The book discusses the rudimentary concept, and describes a range of emerging technologies in the field, including nano, fuel-cell and membrane technologies, as well as membrane bioreactors. It also examines in detail essential and common processes in waste valorization, such as rigorous chemical engineering applications, mathematical modeling and other trans-disciplinary approaches. The chapters present high-quality research papers from the IconSWM 2018 conference.
This book explores the concept and methods of waste management with a new approach of biological valorization. Waste valorization is a process that aims to reduce, reuse, and recycle the waste into usable, value-added, and environmental benign raw materials which can be a source of energy. The book brings together comprehensive information to assert that waste can be converted into a resource or a raw material for value addition. Waste valorization imbibes the natural recycling principles of zero waste, loop closing, and underlines the importance of sustainable and environmentally friendly alternatives. Drawing upon research and examples from around the world, the book is offering an up-to-date account, and insight into the contours of waste valorization principles, biovalorization technologies for diverse group of wastes including agricultural, municipal, and industrial waste. It further discusses the emerging paradigms of waste valorization, waste biorefineries, valorization technologies for energy, biofuel, and biochemical production. The book meets the growing global needs for a comprehensive and holistic outlook on waste management. It is of interest to teachers, researchers, scientists, capacity builders and policymakers. Also, the book serves as additional reading material for undergraduate and graduate students of biotechnology and environmental sciences.
This book highlights current efforts and research on waste management, processing and valorization, particularly in Asia-Africa countries. Chapters 1–2 highlight the overview of plastic waste management and the production of waste plastic oil (WPO). Chapters 3–5 discuss the landfill characterization and application of incineration and composting for waste processing. A new achievement in adsorbent production is highlighted in Chapters 6 and 7 while Chapters 10 and 11 focus on sewage characteristic and its utilization using microalgae. Enzyme production using waste is covered by Chapters 10-12. Chapter 13-14 dedicated to the advances in production of bioenergy. The book concludes with a discussion on life cycle analysis for solid waste management (Chapter 15).
Approx.398 pagesApprox.398 pages
Biotechnology for Zero Waste The use of biotechnology to minimize waste and maximize resource valorization In Biotechnology for Zero Waste: Emerging Waste Management Techniques, accomplished environmental researchers Drs. Chaudhery Mustansar Hussain and Ravi Kumar Kadeppagari deliver a robust exploration of the role of biotechnology in reducing waste and creating a zero-waste environment. The editors provide resources covering perspectives in waste management like anaerobic co-digestion, integrated biosystems, immobilized enzymes, zero waste biorefineries, microbial fuel cell technology, membrane bioreactors, nano biomaterials, and more. Ideal for sustainability professionals, this book comprehensively sums up the state-of-the-art biotechnologies powering the latest advances in zero-waste strategies. The renowned contributors address topics like bioconversion and biotransformation and detail the concept of the circular economy. Biotechnology for Zero Waste effectively guides readers on the path to creating sustainable products from waste. The book also includes: A thorough introduction to modern perspectives on zero waste drives, including anaerobic co-digestion as a smart approach for enhancing biogas production Comprehensive explorations of bioremediation for zero waste, biological degradation systems, and bioleaching and biosorption of waste Practical discussions of bioreactors for zero waste and waste2energy with biotechnology An in-depth examination of emerging technologies, including nanobiotechnology for zero waste and the economics and commercialization of zero waste biotechnologies Perfect for process engineers, natural products, environmental, soil, and inorganic chemists, Biotechnology for Zero Waste: Emerging Waste Management Techniques will also earn a place in the libraries of food technologists, biotechnologists, agricultural scientists, and microbiologists.
HANDBOOK of BIOMASS VALORIZATION for INDUSTRIAL APPLICATIONS The handbook provides a comprehensive view of cutting-edge research on biomass valorization, from advanced fabrication methodologies through useful derived materials, to current and potential application sectors. Industrial sectors, such as food, textiles, petrochemicals and pharmaceuticals, generate massive amounts of waste each year, the disposal of which has become a major issue worldwide. As a result, implementing a circular economy that employs sustainable practices in waste management is critical for any industry. Moreover, fossil fuels, which are the primary sources of fuel in the transportation sector, are also being rapidly depleted at an alarming rate. Therefore, to combat these global issues without increasing our carbon footprint, we must look for renewable resources to produce chemicals and biomaterials. In that context, agricultural waste materials are gaining popularity as cost-effective and abundantly available alternatives to fossil resources for the production of a variety of value-added products, including renewable fuels, fuel components, and fuel additives. Handbook of Biomass Valorization for Industrial Applications investigates current and emerging feedstocks, as well as provides in-depth technical information on advanced catalytic processes and technologies that enable the development of all possible alternative energy sources. The 22 chapters of this book comprehensively cover the valorization of agricultural wastes and their various uses in value-added applications like energy, biofuels, fertilizers, and wastewater treatment. Audience The book is intended for a very broad audience working in the fields of materials sciences, chemical engineering, nanotechnology, energy, environment, chemistry, etc. This book will be an invaluable reference source for the libraries in universities and industrial institutions, government and independent institutes, individual research groups, and scientists working in the field of valorization of biomass.
The role of Corporate Social Responsibility in the business world has developed from a fig leaf marketing front into an important aspect of corporate behavior over the past several years. Sustainable strategies are valued, desired and deployed more and more by relevant players in many industries all over the world. Both research and corporate practice therefore see CSR as a guiding principle for business success. The “Encyclopedia of Corporate Social Responsibility” has been conceived to assist researchers and practitioners to align business and societal objectives. All actors in the field will find reliable and up to date definitions and explanations of the key terms of CSR in this authoritative and comprehensive reference work. Leading experts from the global CSR community have contributed to make the “Encyclopedia of Corporate Social Responsibility” the definitive resource for this field of research and practice.
This book adds a new dimension to the sustainability assessment of food waste reduction and valorisation: policy analysis. Featuring a transdisciplinary analysis by key experts in the field, it identifies the drivers of change in food-waste reduction and valorisation technologies by looking, for example, at the regulatory framework and at policy actions undertaken by local and global actors. The book explores the development of regulations and policies for food-waste prevention, management, and valorisation at a global as well as European Union level. It also discusses the notion of food waste in legal terms and investigates the effects of the lack of a standard, universal definition of food waste on the efficient use of by-products, promising processes and products for technological and commercial exploitation. Utilising mathematical mapping methods to assess food consumption impacts and providing supply chain models that allow the testing of consumption scenarios, the book goes on to discuss a series of emerging technologies (tested at lab scale and/ or pilot scale) and opportunities for the valorisation of food waste.
Advanced Technology for the Conversion of Waste into Fuels and Chemicals: Volume 1: Biological Processes presents advanced and combined techniques that can be used to convert waste to energy, including combustion, gasification, paralysis, anaerobic digestion and fermentation. The book focuses on solid waste conversion to fuel and energy and presents the latest advances in the design, manufacture, and application of conversion technologies. Contributors from the fields of physics, chemistry, metallurgy, engineering and manufacturing present a truly trans-disciplinary picture of the field. Chapters cover important aspects surrounding the conversion of solid waste into fuel and chemicals, describing how valuable energy can be recouped from various waste materials. As huge volumes of solid waste are produced globally while huge amounts of energy are produced from fossil fuels, the technologies described in this comprehensive book provide the information necessary to pursue clean, sustainable power from waste material. - Presents the latest advances in waste to energy techniques for converting solid waste to valuable fuel and energy - Brings together contributors from physics, chemistry, metallurgy, engineering and the manufacturing industry - Includes advanced techniques such as combustion, gasification, paralysis, anaerobic digestion and fermentation - Goes far beyond municipal waste, including discussions on recouping valuable energy from a variety of industrial waste materials - Describes how waste to energy technologies present an enormous opportunity for clean, sustainable energy
​The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field./div Chapters "Sonocatalysis: A Potential Sustainable Pathway for the Valorization of Lignocellulosic Biomass and Derivatives", "Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods" and "Green and Sustainable Separation of Natural Products from Agro-Industrial Waste: Challenges, Potentialities, and Perspectives on Emerging Approaches" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.