Download Free Emerging Roles And Mechanisms Of Stromal Cells In Carcinomas At The Molecular Level Book in PDF and EPUB Free Download. You can read online Emerging Roles And Mechanisms Of Stromal Cells In Carcinomas At The Molecular Level and write the review.

This volume examines in detail the role of chronic inflammatory processes in the development of several types of cancer. Leading experts describe the latest results of molecular and cellular research on infection, cancer-related inflammation and tumorigenesis. Further, the clinical significance of these findings in preventing cancer progression and approaches to treating the diseases are discussed. Individual chapters cover cancer of the lung, colon, breast, brain, head and neck, pancreas, prostate, bladder, kidney, liver, cervix and skin as well as gastric cancer, sarcoma, lymphoma, leukemia and multiple myeloma.
Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.
Mesenchymal stem cell-derived exosomes are at the forefront of research in two of the most high profile and funded scientific areas – cardiovascular research and stem cells. Mesenchymal Stem Cell Derived Exosomes provides insight into the biofunction and molecular mechanisms, practical tools for research, and a look toward the clinical applications of this exciting phenomenon which is emerging as an effective diagnostic. Primarily focused on the cardiovascular applications where there have been the greatest advancements toward the clinic, this is the first compendium for clinical and biomedical researchers who are interested in integrating MSC-derived exosomes as a diagnostic and therapeutic tool. - Introduces the MSC-exosome mediated cell-cell communication - Covers the major functional benefits in current MSC-derived exosome studies - Discusses strategies for the use of MSC-derived exosomes in cardiovascular therapies
Most cancer deaths are a result of metastasis. The spread of a primary tumor to colonize neighboring and distant organs is the relentless endgame that defines the neoplastic process. Patients who have been diagnosed with cancer are treated to prevent both the recurrence of the tumor at the site of origin and metastasis that would re-stage them as advanced stage IV cancer. Historically and still with some types of cancer, stage IV is perceived by patients as “terminal.” Fortunately, recent molecular therapies have extended the lives of patients with advanced cancer and reassuringly people living with metastatic disease increasingly visit our clinics. What is the path forward? Given that the consilience of science and medicine is a dynamic art from which therapies arise, it would be misguided to consider any single work adequate at capturing the horizon for research. So with humility we constructed this text as primer for scientists. It begins with a broad introduction to the clinical management of common cancers. This is intended to serve as a foundation for investigators to consider when developing basic science hypotheses. Unquestionably, medical and surgical care of cancer patients reveals biology and dictates how novel therapeutics will ultimately be evaluated in clinical trials. The second section of this text offers provocative and evolving insights that underscore the breadth of science involved in the elucidation of cancer metastasis biology. The text concludes with information that integrates scientific and clinical foundations to highlight translational research. This book serves as a framework for scientists to conceptualize clinical and translational knowledge on the complexity of disease that is metastatic cancer.
The identification of the role of tumor stroma—the tissue in the surroundings of cancer cells—in cancer development, progression, and metastasis has revolutionized the fields of cancer biology as well as cancer therapeutics. This book provides a comprehensive overview of this rapidly-evolving field including tumor stroma biology, therapeutic targets, molecular imaging, and advanced tumor stroma in vitro models. The book will serve as a handbook for graduate students, postgraduate researchers, pharmaceutical scientists, and biomedical engineers.
This volume will be the first to provide a comprehensive description of tumor dormancy. It will define the clinical and biological aspects of this phenomenon, as well as the cellular and molecular mechanisms associated with tumor dormancy. Chapters will be authored by world-renewed experts who are conducting cutting-edge research in the field. A unique feature will be a conclusive paragraph detailing future development and foreseeable clinical applications at the end of each chapter. The volume will serve as a fundamental instrument for every researcher and clinician interested in the field of tumor dormancy as well as a means of disseminating stimulating concepts and prompting the development of innovative technological solutions.
The clinical significance of tumor spread has always been appreciated. Yet, in spite of the pioneering work and outstanding contributions of investigators such as D. Coman, H. Green, B. Fisher, S. Wood and I. Zeidman, studies on metastasis rarely achieved the popularity afforded to more esoteric areas of tumor biology. Tumor dissemination, occurring as it does in a responding host and being composed of a series of dynamic int~ractions, is a highly complex phenomenon. Few investigators were brave enough to attempt to unravel the mechanisms involved. Paradoxically, this very complexity may have contributed, in part, to the recent upsurge of interest in metastasis research. More and more researchers are becoming fascinated by the complexities of the cellular interactions involved in tumor spread. Accompanying this intellectual stimulation have been technological advances in related fields which allow the derivation of new model systems. The mechanisms of metastatic spread are increasingly amenable to both the reductionist and holistic approaches and it is the purpose of this volume to present many of these model systems while emphasizing the intricacy and complexity of the processes they mimic. We have attempted to emphasize two topics not previously covered in depth in previous books on metastases. These are in vitro models of invasion and in teractions of tumor cells with connective tissue.