Download Free Emc Of Analog Integrated Circuits Book in PDF and EPUB Free Download. You can read online Emc Of Analog Integrated Circuits and write the review.

Environmental electromagnetic pollution has drastically increased over the last decades. The omnipresence of communication systems, various electronic appliances and the use of ever increasing frequencies, all contribute to a noisy electromagnetic environment which acts detrimentally on sensitive electronic equipment. Integrated circuits must be able to operate satisfactorily while cohabiting harmoniously in the same appliance, and not generate intolerable levels of electromagnetic emission, while maintaining a sound immunity to potential electromagnetic disturbances: analog integrated circuits are in particular more easily disturbed than their digital counterparts, since they don't have the benefit of dealing with predefined levels ensuring an innate immunity to disturbances. The objective of the research domain presented in EMC of Analog Integrated Circuits is to improve the electromagnetic immunity of considered analog integrated circuits, so that they start to fail at relevantly higher conduction levels than before.
This book introduces a new approach to model and predict substrate parasitic failures in integrated circuits with standard circuit design tools. The injection of majority and minority carriers in the substrate is a recurring problem in smart power ICs containing high voltage, high current switching devices besides sensitive control, protection and signal processing circuits. The injection of parasitic charges leads to the activation of substrate bipolar transistors. This book explores how these events can be evaluated for a wide range of circuit topologies. To this purpose, new generalized devices implemented in Verilog-A are used to model the substrate with standard circuit simulators. This approach was able to predict for the first time the activation of a latch-up in real circuits through post-layout SPICE simulation analysis. Discusses substrate modeling and circuit-level simulation of parasitic bipolar device coupling effects in integrated circuits; Includes circuit back-annotation of the parasitic lateral n-p-n and vertical p-n-p bipolar transistors in the substrate; Uses Spice for simulation and characterization of parasitic bipolar transistors, latch-up of the parasitic p-n-p-n structure, and electrostatic discharge (ESD) protection devices; Offers design guidelines to reduce couplings by adding specific protections.
Presents the results of research to improve the electromagnetic immunity of considered analog integrated circuits so that they start to fail at relevantly higher conduction levels.
Electromagnetic Compatibility of Integrated Circuits: Techniques for Low Emission and Susceptibility focuses on the electromagnetic compatibility of integrated circuits. The basic concepts, theory, and an extensive historical review of integrated circuit emission and susceptibility are provided. Standardized measurement methods are detailed through various case studies. EMC models for the core, I/Os, supply network, and packaging are described with applications to conducted switching noise, signal integrity, near-field and radiated noise. Case studies from different companies and research laboratories are presented with in-depth descriptions of the ICs, test set-ups, and comparisons between measurements and simulations. Specific guidelines for achieving low emission and susceptibility derived from the experience of EMC experts are presented.
Enables the reader to test an analog circuit that is implemented either in bipolar or MOS technology. Examines the testing and fault diagnosis of analog and analog part of mixed signal circuits. Covers the testing and fault diagnosis of both bipolar and Metal Oxide Semiconductor (MOS) circuits and introduces . Also contains problems that can be used as quiz or homework.
This book discusses larger signal amplifiers (denoted as PA). Large signal amplifiers are dealing with signals whose magnitude is such that the operation of the active element can no longer be considered linear. They are usually designed to get as much power gain and efficiency as possible. That is why they are often called power amplifiers. In this book, two implementations of PA are considered. First, it is of interest to obtain large signals (current or voltage) at the output of a cascade of direct coupled amplifiers. In this case, linearity, frequency response, and speed are the most important requirements. Second are real power amplifiers where the power delivered to the load is of primary interest. Of course, efficiency, linearity, and high frequency response are of interest, too. A very special attention is paid to modern power electronic components such as Power BJT, VDMOS, IGBT, SiC MOS, and GaN HEMT. DC and switching properties of all these devices are studied in much detail. This book also includes a set of appendices which cover: solved problems, SPICE simulation results for selected set of circuits, and a short review of microelectronic technology process
This book provides a sound grasp of the fundamental concepts, applications, and practice of EMC. Developments in recent years have resulted in further increases in electrical component density, wider penetration of wireless technologies, and a significant increase in complexity of electrical and electronic equipment. New materials, which can be customized to meet EMC needs, have been introduced. Considerable progress has been made in developing numerical tools for complete system EMC simulation. EMC is now a central consideration in all industrial sectors. Maintaining the holistic approach of the previous edition of Principles and Techniques of Electromagnetic Compatibility, the Third Edition updates coverage of EMC to reflects recent important developments. What is new in the Third Edition? A comprehensive treatment of new materials (meta- and nano-) and their impact on EMC Numerical modelling of complex systems and complexity reduction methods Impact of wireless technologies and the Internet of Things (IoT) on EMC Testing in reverberation chambers, and in the time-domain A comprehensive treatment of the scope and development of stochastic models for EMC EMC issues encountered in automotive, railway, aerospace, and marine applications Impact of EMC and Intentional EMI (IEMI) on infrastructure, and risk assessment In addition to updating material, new references, examples, and appendices were added to offer further support to readers interested in exploring further. As in previous editions, the emphasis is on building a sound theoretical framework, and demonstrating how it can be turned to practical use in challenging applications. The expectation is that this approach will serve EMC engineers through the inevitable future technological shifts and developments.
Number 12 in the successful series of Analog Circuit Design provides valuable information and excellent overviews of analogue circuit design, CAD and RF systems. The series is an ideal reference for those involved in analogue and mixed-signal design.
Analog Circuit Design is based on the yearly Advances in Analog Circuit Design workshop. The aim of the workshop is to bring together designers of advanced analogue and RF circuits for the purpose of studying and discussing new possibilities and future developments in this field. Selected topics for AACD 2007 were: (1) Sensors, Actuators and Power Drivers for the Automotive and Industrial Environment; (2) Integrated PA's from Wireline to RF; (3) Very High Frequency Front Ends.
This book focuses on modeling, simulation and analysis of analog circuit aging. First, all important nanometer CMOS physical effects resulting in circuit unreliability are reviewed. Then, transistor aging compact models for circuit simulation are discussed and several methods for efficient circuit reliability simulation are explained and compared. Ultimately, the impact of transistor aging on analog circuits is studied. Aging-resilient and aging-immune circuits are identified and the impact of technology scaling is discussed. The models and simulation techniques described in the book are intended as an aid for device engineers, circuit designers and the EDA community to understand and to mitigate the impact of aging effects on nanometer CMOS ICs.