Download Free Elliptic Boundary Value Problems With Indefinite Weights Variational Formulations Of The Principal Eigenvalue And Applications Book in PDF and EPUB Free Download. You can read online Elliptic Boundary Value Problems With Indefinite Weights Variational Formulations Of The Principal Eigenvalue And Applications and write the review.

Elliptic Boundary Value Problems With Indefinite Weights presents a unified approach to the methodologies dealing with eigenvalue problems involving indefinite weights. The principal eigenvalue for such problems is characterized for various boundary conditions. Such characterizations are used, in particular, to formulate criteria for the persistence and extinctions of populations, and applications of the formulations obtained can be quite extensive.
This first part of this book deals with the boundary value problem with equivalued surfaces, while the second part is concerned with the mathematical model and method, including the numerical method, of the resistivity well-logging for the three-lateral well-logging.
Nonsmooth and nonconvex models arise in several important applications of mechanics and engineering. The interest in this field is growing from both mathematicians and engineers. The study of numerous industrial applications, including contact phenomena in statics and dynamics or delamination effects in composites, require the consideration of nonsmoothness and nonconvexity. The mathematical topics discussed in this book include variational and hemivariational inequalities, duality, complementarity, variational principles, sensitivity analysis, eigenvalue and resonance problems, and minimax problems. Applications are considered in the following areas among others: nonsmooth statics and dynamics, stability of quasi- static evolution processes, friction problems, adhesive contact and debonding, inverse problems, pseudoelastic modeling of phase transitions, chaotic behavior in nonlinear beams, and nonholonomic mechanical systems. This volume contains 22 chapters written by various leading researchers and presents a cohesive and authoritative overview of recent results and applications in the area of nonsmooth and nonconvex mechanics. Audience: Faculty, graduate students, and researchers in applied mathematics, optimization, control and engineering.
Ten years after publication of the popular first edition of this volume, the index theorem continues to stand as a central result of modern mathematics-one of the most important foci for the interaction of topology, geometry, and analysis. Retaining its concise presentation but offering streamlined analyses and expanded coverage of important exampl
Ten years after publication of the popular first edition of this volume, the index theorem continues to stand as a central result of modern mathematics-one of the most important foci for the interaction of topology, geometry, and analysis. Retaining its concise presentation but offering streamlined analyses and expanded coverage of important examples and applications, Elliptic Operators, Topology, and Asymptotic Methods, Second Edition introduces the ideas surrounding the heat equation proof of the Atiyah-Singer index theorem. The author builds towards proof of the Lefschetz formula and the full index theorem with four chapters of geometry, five chapters of analysis, and four chapters of topology. The topics addressed include Hodge theory, Weyl's theorem on the distribution of the eigenvalues of the Laplacian, the asymptotic expansion for the heat kernel, and the index theorem for Dirac-type operators using Getzler's direct method. As a "dessert," the final two chapters offer discussion of Witten's analytic approach to the Morse inequalities and the L2-index theorem of Atiyah for Galois coverings. The text assumes some background in differential geometry and functional analysis. With the partial differential equation theory developed within the text and the exercises in each chapter, Elliptic Operators, Topology, and Asymptotic Methods becomes the ideal vehicle for self-study or coursework. Mathematicians, researchers, and physicists working with index theory or supersymmetry will find it a concise but wide-ranging introduction to this important and intriguing field.
This book presents the texts of selected lectures on recent work in the field of nonlinear partial differential equations delivered by leading international experts at the well-established weekly seminar held at the Collège de France. Emphasis is on applications to numerous areas, including control theory, theoretical physics, fluid and continuum mechanics, free boundary problems, dynamical systems, scientific computing, numerical analysis, and engineering. Proceedings of this seminar will be of particular interest to postgraduate students and specialists in the area of nonlinear partial differential equations.
This volume constitutes the proceedings of a conference on functional analysis and its applications, which took place in India during December 1996. Topics include topological vector spaces, Banach algebras, meromorphic functions, partial differential equations, variational equations and inequalities, optimization, wavelets, elastroplasticity, numerical integration, fractal image compression, reservoir simulation, forest management, and industrial maths.
In this volume, the contributing authors deal primarily with the interaction among problems of analysis and geometry in the context of inner product spaces. They present new and old characterizations of inner product spaces among normed linear spaces and the use of such spaces in various research problems of pure and applied mathematics. The methods employed are accessible to students familiar with normed linear spaces. Some of the theorems presented are at the same time simple and challenging.
The general theories contained in the text will give rise to new ideas and methods for the natural inversion formulas for general linear mappings in the framework of Hilbert spaces containing the natural solutions for Fredholm integral equations of the first kind.
Topics in Random Polynomials presents a rigorous and comprehensive treatment of the mathematical behavior of different types of random polynomials. These polynomials-the subject of extensive recent research-have many applications in physics, economics, and statistics. The main results are presented in such a fashion that they can be understood and used by readers whose knowledge of probability incorporates little more than basic probability theory and stochastic processes.