Download Free Elements Of Vector Analysis Book in PDF and EPUB Free Download. You can read online Elements Of Vector Analysis and write the review.

Prize-winning study traces the rise of the vector concept from the discovery of complex numbers through the systems of hypercomplex numbers to the final acceptance around 1910 of the modern system of vector analysis.
This book presents modern vector analysis and carefully describes the classical notation and understanding of the theory. It covers all of the classical vector analysis in Euclidean space, as well as on manifolds, and goes on to introduce de Rham Cohomology, Hodge theory, elementary differential geometry, and basic duality. The material is accessible to readers and students with only calculus and linear algebra as prerequisites. A large number of illustrations, exercises, and tests with answers make this book an invaluable self-study source.
Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.
Vector Analysis and Cartesian Tensors, Second Edition focuses on the processes, methodologies, and approaches involved in vector analysis and Cartesian tensors, including volume integrals, coordinates, curves, and vector functions. The publication first elaborates on rectangular Cartesian coordinates and rotation of axes, scalar and vector algebra, and differential geometry of curves. Discussions focus on differentiation rules, vector functions and their geometrical representation, scalar and vector products, multiplication of a vector by a scalar, and angles between lines through the origin. The text then elaborates on scalar and vector fields and line, surface, and volume integrals, including surface, volume, and repeated integrals, general orthogonal curvilinear coordinates, and vector components in orthogonal curvilinear coordinates. The manuscript ponders on representation theorems for isotropic tensor functions, Cartesian tensors, applications in potential theory, and integral theorems. Topics include geometrical and physical significance of divergence and curl, Poisson's equation in vector form, isotropic scalar functions of symmetrical second order tensors, and diagonalization of second-order symmetrical tensors. The publication is a valuable reference for mathematicians and researchers interested in vector analysis and Cartesian tensors.
The book, Elements of Vector Algebra, is written for high school and engineering students who wish to gain elementary knowledge of vectors. Algebraic and geometric interpretations of vectors, along with examples and exercises in mathematical and engineering applications, have been provided to help develop a clear understanding of the vector concepts. The book provides thorough treatment of elementary vector operators and their algebra, product of two and three vectors and various engineering and scientific applications involving these concepts. At the end of each chapter, comprehensive exercises with varying degrees of difficulty have been provided to further hone the concepts. Interdisciplinary problems that have practical applications can also be found in this book catering to the ever-extending scope of vector algebra.
It is an ideal companion for courses such as mathematical methods of physics, classical mechanics, electricity and magnetism, and relativity.--Gary White, editor of The Physics Teacher "American Journal of Physics"
Vector Analysis for Mathematicians, Scientists and Engineers, Second Edition, provides an understanding of the methods of vector algebra and calculus to the extent that the student will readily follow those works which make use of them, and further, will be able to employ them himself in his own branch of science. New concepts and methods introduced are illustrated by examples drawn from fields with which the student is familiar, and a large number of both worked and unworked exercises are provided. The book begins with an introduction to vectors, covering their representation, addition, geometrical applications, and components. Separate chapters discuss the products of vectors; the products of three or four vectors; the differentiation of vectors; gradient, divergence, and curl; line, surface, and volume integrals; theorems of vector integration; and orthogonal curvilinear coordinates. The final chapter presents an application of vector analysis. Answers to odd-numbered exercises are provided as the end of the book.
Vector Analysis with Applications discusses the theory of vector algebra, vector differential and integral calculus with applications to various fields such as geometry, mechanics, physics and engineering. The concept of vector analysis is explained lucidly with the geometric notions and physical motivations. Many new approaches and new problems have been incorporated to enable the readers understand the subject in a comprehensive and systematic manner. Numerous solved problems have been included in each chapter with sufficient number of exercises. Each concept is explained with geometric figures.
Ideal for undergraduate and graduate students of science and engineering, this book covers fundamental concepts of vectors and their applications in a single volume. The first unit deals with basic formulation, both conceptual and theoretical. It discusses applications of algebraic operations, Levi-Civita notation, and curvilinear coordinate systems like spherical polar and parabolic systems and structures, and analytical geometry of curves and surfaces. The second unit delves into the algebra of operators and their types and also explains the equivalence between the algebra of vector operators and the algebra of matrices. Formulation of eigen vectors and eigen values of a linear vector operator are elaborated using vector algebra. The third unit deals with vector analysis, discussing vector valued functions of a scalar variable and functions of vector argument (both scalar valued and vector valued), thus covering both the scalar vector fields and vector integration.