Download Free Elements Of Statistical Mechanics Book in PDF and EPUB Free Download. You can read online Elements Of Statistical Mechanics and write the review.

This concise introduction to the key concepts and tools of modern statistical mechanics is self-contained. Combining analytical and numerical techniques, it also covers advanced topics such as non-relativistic quantum field theory. After introducing classical analytical techniques, the authors present important numerical methods and a diverse range of applications. Quantum statistical mechanics is then analyzed and applied to topics in astrophysics and cosmology. Combining the authors' many years' experience of teaching courses in this area, this textbook is ideal for advanced students in physics, chemistry and mathematics.
Statistical Mechanics discusses the fundamental concepts involved in understanding the physical properties of matter in bulk on the basis of the dynamical behavior of its microscopic constituents. The book emphasizes the equilibrium states of physical systems. The text first details the statistical basis of thermodynamics, and then proceeds to discussing the elements of ensemble theory. The next two chapters cover the canonical and grand canonical ensemble. Chapter 5 deals with the formulation of quantum statistics, while Chapter 6 talks about the theory of simple gases. Chapters 7 and 8 examine the ideal Bose and Fermi systems. In the next three chapters, the book covers the statistical mechanics of interacting systems, which includes the method of cluster expansions, pseudopotentials, and quantized fields. Chapter 12 discusses the theory of phase transitions, while Chapter 13 discusses fluctuations. The book will be of great use to researchers and practitioners from wide array of disciplines, such as physics, chemistry, and engineering.
This book deals with the basic principles and techniques of nonequilibrium statistical mechanics. The importance of this subject is growing rapidly in view of the advances being made, both experimentally and theoretically, in statistical physics, chemical physics, biological physics, complex systems and several other areas. The presentation of topics is quite self-contained, and the choice of topics enables the student to form a coherent picture of the subject. The approach is unique in that classical mechanical formulation takes center stage. The book is of particular interest to advanced undergraduate and graduate students in engineering departments.
Sufficiently rigorous for introductory or intermediate graduate courses, this text offers a comprehensive treatment of the techniques and limitations of statistical mechanics. 82 figures. 15 tables. 1962 edition.
Key features include an elementary introduction to probability, distribution functions, and uncertainty; a review of the concept and significance of energy; and various models of physical systems. 1968 edition.
Phase space, ergodic problems, central limit theorem, dispersion and distribution of sum functions. Chapters include Geometry and Kinematics of the Phase Space; Ergodic Problem; Reduction to the Problem of the Theory of Probability; Application of the Central Limit Theorem; Ideal Monatomic Gas; The Foundation of Thermodynamics; and more.
The essential introduction to modern statistical mechanics—now completely updated and expanded Statistical mechanics is one of the most exciting areas of physics today and has applications to subjects ranging from economics and social behavior to algorithmic theory and evolutionary biology. Statistical Mechanics in a Nutshell provides a self-contained introduction to this rapidly developing field. Starting with the basics of kinetic theory and requiring only a background in elementary calculus and mechanics, this concise book discusses the most important developments of recent decades and guides readers to the very threshold of today’s cutting-edge research. Features a new chapter on stochastic thermodynamics with an introduction to the thermodynamics of information—the first treatment of its kind in an introductory textbook Offers a more detailed account of numerical simulations, including simulated annealing and other accelerated Monte Carlo methods The chapter on complex systems now features an accessible introduction to the replica theory of spin glasses and the Hopfield theory of neural networks, with an emphasis on applications Provides a new discussion of defect-mediated transitions and their implications for two-dimensional melting An invaluable resource for graduate students and advanced undergraduates seeking a compact primer on the core ideas of statistical mechanics Solutions manual (available only to instructors)
A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.