Download Free Elements Of Power Electronics Book in PDF and EPUB Free Download. You can read online Elements Of Power Electronics and write the review.

Building on the tradition of its classic first edition, the long-awaited second edition of Elements of Power Electronics provides comprehensive coverage of the subject at a level suitable for undergraduate engineering students, students in advanced degree programs, and novices in the field. It establishes a fundamental engineering basis for power electronics analysis, design, and implementation, offering broad and in-depth coverage of basic material.Streamlined throughout to reflect new innovations in technology, the second edition also features updates on renewable and alternative energy.Elements of Power Electronics features a unifying framework that includes the physical implications of circuit laws, switching circuit analysis, and the basis for converter operation and control. It discusses dc-dc, ac-dc, dc-ac, and ac-ac conversion tasks and principles of resonant converters and discontinuous converters. The text also addresses magnetic device design, thermal management and drivers for power semiconductors, control system aspects of converters, and both small-signaland geometric controls. Models for real devices and components-including capacitors, inductors, wire connections, and power semiconductors-are developed in depth, while newly expanded examples show students how to use tools like Mathcad, Matlab, and Mathematica to aid in the analysis and design of conversion circuits.Features:*More than 160 examples and 350 chapter problems support the presented concepts*An extensive Companion Website includes additional problems, laboratory materials, selected solutions for students, computer-based examples, and analysis tools for Mathcad, Matlab, and Mathematica
Fundamentals of Power Electronics, Third Edition, is an up-to-date and authoritative text and reference book on power electronics. This new edition retains the original objective and philosophy of focusing on the fundamental principles, models, and technical requirements needed for designing practical power electronic systems while adding a wealth of new material. Improved features of this new edition include: new material on switching loss mechanisms and their modeling; wide bandgap semiconductor devices; a more rigorous treatment of averaging; explanation of the Nyquist stability criterion; incorporation of the Tan and Middlebrook model for current programmed control; a new chapter on digital control of switching converters; major new chapters on advanced techniques of design-oriented analysis including feedback and extra-element theorems; average current control; new material on input filter design; new treatment of averaged switch modeling, simulation, and indirect power; and sampling effects in DCM, CPM, and digital control. Fundamentals of Power Electronics, Third Edition, is intended for use in introductory power electronics courses and related fields for both senior undergraduates and first-year graduate students interested in converter circuits and electronics, control systems, and magnetic and power systems. It will also be an invaluable reference for professionals working in power electronics, power conversion, and analog and digital electronics.
Market_Desc: · Electrical Engineering Students · Electrical Engineering Instructors· Power Electronics Engineers Special Features: · Easy to follow step-by-step in depth treatment of all the theory.· Computer simulation chapter describes the role of computer simulations in power electronics. Examples and problems based on Pspice and MATLAB are included.· Introductory chapter offers a review of basic electrical and magnetic circuit concepts.· A new CD-ROM contains the following:· Over 100 of new problems of varying degrees of difficulty for homework assignments and self-learning.· PSpice-based simulation examples, which illustrate basic concepts and help in design of converters.· A newly-developed magnetic component design program that demonstrates design trade-offs.· PowerPoint-based slides, which will improve the learning experience and the ease of using the book About The Book: The text includes cohesive presentation of power electronics fundamentals for applications and design in the power range of 500 kW or less. It describes a variety of practical and emerging power electronic converters made feasible by the new generation of power semiconductor devices. Topics included in this book are an expanded discussion of diode rectifiers and thyristor converters as well as chapters on heat sinks, magnetic components which present a step-by-step design approach and a computer simulation of power electronics which introduces numerical techniques and commonly used simulation packages such as PSpice, MATLAB and EMTP.
From the fan motor in your PC to precision control of aircraft, electrical machines of all sizes, varieties, and levels of complexity permeate our world. Some are very simple, while others require exacting and application-specific design. Electrical Machine Analysis Using Finite Elements provides the tools necessary for the analysis and design of any type of electrical machine by integrating mathematical/numerical techniques with analytical and design methodologies. Building successively from simple to complex analyses, this book leads you step-by-step through the procedures and illustrates their implementation with examples of both traditional and innovative machines. Although the examples are of specific devices, they demonstrate how the procedures apply to any type of electrical machine, introducing a preliminary theory followed by various considerations for the unique circumstance. The author presents the mathematical background underlying the analysis, but emphasizes application of the techniques, common strategies, and obtained results. He also supplies codes for simple algorithms and reveals analytical methodologies that universally apply to any software program. With step-by-step coverage of the fundamentals and common procedures, Electrical Machine Analysis Using Finite Elements offers a superior analytical framework that allows you to adapt to any electrical machine, to any software platform, and to any specific requirements that you may encounter.
Control circuits are a key element in the operation and performance of power electronics converters. This book describes practical issues related to the design and implementation of these control circuits, and is divided into three parts - analogue control circuits, digital control circuits, and new trends in control circuits.
Power Electronics and Motor Drive Systems is designed to aid electrical engineers, researchers, and students to analyze and address common problems in state-of-the-art power electronics technologies. Author Stefanos Manias supplies a detailed discussion of the theory of power electronics circuits and electronic power conversion technology systems, with common problems and methods of analysis to critically evaluate results. These theories are reinforced by simulation examples using well-known and widely available software programs, including SPICE, PSIM, and MATLAB/SIMULINK. Manias expertly analyzes power electronic circuits with basic power semiconductor devices, as well as the new power electronic converters. He also clearly and comprehensively provides an analysis of modulation and output voltage, current control techniques, passive and active filtering, and the characteristics and gating circuits of different power semiconductor switches, such as BJTs, IGBTs, MOSFETs, IGCTs, MCTs and GTOs. - Includes step-by-step analysis of power electronic systems - Reinforced by simulation examples using SPICE, PSIM, and MATLAB/SIMULINK - Provides 110 common problems and solutions in power electronics technologies
Provides comprehensive coverage of the basic principles and methods of electric power conversion and the latest developments in the field This book constitutes a comprehensive overview of the modern power electronics. Various semiconductor power switches are described, complementary components and systems are presented, and power electronic converters that process power for a variety of applications are explained in detail. This third edition updates all chapters, including new concepts in modern power electronics. New to this edition is extended coverage of matrix converters, multilevel inverters, and applications of the Z-source in cascaded power converters. The book is accompanied by a website hosting an instructor’s manual, a PowerPoint presentation, and a set of PSpice files for simulation of a variety of power electronic converters. Introduction to Modern Power Electronics, Third Edition: Discusses power conversion types: ac-to-dc, ac-to-ac, dc-to-dc, and dc-to-ac Reviews advanced control methods used in today’s power electronic converters Includes an extensive body of examples, exercises, computer assignments, and simulations Introduction to Modern Power Electronics, Third Edition is written for undergraduate and graduate engineering students interested in modern power electronics and renewable energy systems. The book can also serve as a reference tool for practicing electrical and industrial engineers.
Modeling and Control of Power Electronics Converter Systems for Power Quality Improvements provides grounded theory for the modeling, analysis and control of different converter topologies that improve the power quality of mains. Intended for researchers and practitioners working in the field, topics include modeling equations and the state of research to improve power quality converters. By presenting control methods for different converter topologies and aspects related to multi-level inverters and specific analysis related to the AC interface of drives, the book helps users by putting a particular emphasis on different control algorithms that enhance knowledge and research work. Present In-depth coverage of modeling and control methods for different converter topology Includes a particular emphasis on different control algorithms to give readers an easier understanding Provides a results and discussion chapter and MATLAB simulation to support worked examples and real-life application scenarios
Elements of Power Systems prepares students for engineering degrees, diplomas, Associate Member of the Institution of Engineers (AMIE) examinations, or corresponding examinations in electrical power systems. Complete with case studies, worked examples, and circuit schematic diagrams, this comprehensive text:Provides a solid understanding of the the