Download Free Elements Of Geometrical Optics Classic Reprint Book in PDF and EPUB Free Download. You can read online Elements Of Geometrical Optics Classic Reprint and write the review.

In this sequel to his book, "The Optics of Rays, Wavefronts, and Caustics," Stavroudis not only covers his own research results, but also includes more recent developments. The book is divided into three parts, starting with basic mathematical concepts that are further applied in the book. Surface geometry is treated with classical mathematics, while the second part covers the k-function, discussing and solving the eikonal equation as well as Maxwell equations in this context. A final part on applications consists of conclusions drawn or developed in the first two parts of the book, discussing such topics as the Cartesian oval, the modern Schiefspiegler, Huygen's principle, and Maxwell's model of Gauss' perfect lens.
Optical imaging starts with geometrical optics, and ray tracing lies at its forefront. This book starts with Fermat’s principle and derives the three laws of geometrical optics from it. After discussing imaging by refracting and reflecting systems, paraxial ray tracing is used to determine the size of imaging elements and obscuration in mirror systems. Stops, pupils, radiometry, and optical instruments are also discussed. The chromatic and monochromatic aberrations are addressed in detail, followed by spot sizes and spot diagrams of aberrated images of point objects. Each chapter ends with a summary and a set of problems. The book ends with an epilogue that summarizes the imaging process and outlines the next steps within and beyond geometrical optics.
This textbook provides a sound foundation in physical optics by covering key concepts in a rigorous but accessible manner. Propagation of electromagnetic waves is examined from multiple perspectives, with explanation of which viewpoints and methods are best suited to different situations. After an introduction to the theory of electromagnetism, reflection, refraction, and dispersion, topics such as geometrical optics, interference, diffraction, coherence, laser beams, polarization, crystallography, and anisotropy are closely examined. Optical elements, including lenses, mirrors, prisms, classical and Fabry-Perot interferometers, resonant cavities, multilayer dielectric structures, interference and spatial filters, diffraction gratings, polarizers, and birefringent plates, are treated in depth. The coverage also encompasses such seldom-covered topics as modeling of general astigmatism via 4x4 matrices, FFT-based numerical methods, and bianisotropy, with a relativistic treatment of optical activity and the Faraday and Fresnel-Fizeau effects. Finally, the history of optics is discussed.
A concise, yet deep introduction to geometrical optics, developing the practical skills and research techniques routinely used in modern laboratories. Suitable for both students and self-learners, this accessible text teaches readers how to build their own optical laboratory, and design and perform optical experiments.
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Sixth Edition covers optical phenomenon that can be treated with Maxwell's phenomenological theory. The book is comprised of 14 chapters that discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals. The text covers the elements of the theories of interference, interferometers, and diffraction. The book tackles several behaviors of light, including its diffraction when exposed to ultrasonic waves. The selection will be most useful to researchers whose work involves understanding the behavior of light.
"This second volume of the series Lectures in Optics provides a comprehensive presentation of the Geometrical Optics effects. It discusses refraction and reflection off a single surface, flat and spherical. Then the essential building elements of optical power and beam vergence are presented: their importance is paramount in imaging, since the incident vergence is added to the element's power to produce the beam vergence leaving the optical element. Hence, imaging definitions and formulation are produced. The book then presents analytically all possible imaging arrangements with a single element, single lens, and a mirror. Then we proceed to add two more parameters: the extent of an element along the optical axis (thick lenses and lens systems) and the extent of an element perpendicular to the optical axis (stops and pupils). The ramifications on image quality due to the transverse restriction of light are presented, such as resolution and image blur. Finally, the book introduces the concepts of optical aberrations"--
The text is a comprehensive and up-to-date introduction to optics suitable for one- or two-term intermediate and upper level undergraduate physics and engineering students. The reorganized table of contents provides instructors the flexibility to tailor the chapters to meet their individual needs.
This comprehensive and self-contained text for researchers and professionals presents a detailed account of optical imaging from the viewpoint of both ray and wave optics.
Symplectic geometry, well known as the basic structure of Hamiltonian mechanics, is also the foundation of optics. In fact, optical systems (geometric or wave) have an even richer symmetry structure than mechanical ones (classical or quantum). The symmetries underlying the geometric model of light are based on the symplectic group. Geometric Optics on Phase Space develops both geometric optics and group theory from first principles in their Hamiltonian formulation on phase space. This treatise provides the mathematical background and also collects a host of useful methods of practical importance, particularly the fractional Fourier transform currently used for image processing. The reader will appreciate the beautiful similarities between Hamilton's mechanics and this approach to optics. The appendices link the geometry thus introduced to wave optics through Lie methods. The book addresses researchers and graduate students.