Download Free Elementary Statistics In Hydrology Book in PDF and EPUB Free Download. You can read online Elementary Statistics In Hydrology and write the review.

This book provides a compilation of statistical analysis methods used to analyze and assess critical variables in the hydrological cycle.
This textbook covers the main applications of statistical methods in hydrology. It is written for upper undergraduate and graduate students but can be used as a helpful guide for hydrologists, geographers, meteorologists and engineers. The book is very useful for teaching, as it covers the main topics of the subject and contains many worked out examples and proposed exercises. Starting from simple notions of the essential graphical examination of hydrological data, the book gives a complete account of the role that probability considerations must play during modelling, diagnosis of model fit, prediction and evaluating the uncertainty in model predictions, including the essence of Bayesian application in hydrology and statistical methods under nonstationarity. The book also offers a comprehensive and useful discussion on subjective topics, such as the selection of probability distributions suitable for hydrological variables. On a practical level, it explains MS Excel charting and computing capabilities, demonstrates the use of Winbugs free software to solve Monte Carlo Markov Chain (MCMC) simulations, and gives examples of free R code to solve nonstationary models with nonlinear link functions with climate covariates.
Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.
This second edition focuses on the application of statistical methods in the field of hydrology and hydroclimatology. Among the latest theories being used in these fields, the book introduces the theory of copulas and its applications in this context. The purpose is to develop an understanding and illustrate the usefulness of the statistical techniques with detailed theory and numerous worked out examples. Apart from this, sample scripts based on MATLAB, Python and R for some examples are also provided to assist the readers to handle real life data. Besides serving as a textbook for graduate courses on stochastic modeling in hydrology and related disciplines, the book offers a valuable resource for researchers and professionals involved in the field of hydrology and climatology.
The revised edition of this classic text presents basic statistical principles for students of hydrology. The book incorporates updated techniques and includes increased discussion of applied statistics and new/expanded sections on geostatistics, risk analysis, the use of computer computers in statistical analysis, and the use of statistics in hydrologic and water quality modeling. Copyright © Libri GmbH. All rights reserved.
This book focuses on the application of statistical methods in the field of hydrology and hydroclimatology. Among the latest theories being used in these fields, the book introduces the theory of copulas and its applications in this context. The purpose is to develop an understanding and illustrate the usefulness of the statistical techniques with detailed theory and numerous worked out examples. Apart from this, MATLAB-based codes and solutions of some worked out examples are also provided to assist the readers to handle real life data. This book presents a comprehensive knowledge of statistical techniques combining the basics of probability and the current advances in stochastic hydrology. Besides serving as a textbook for graduate courses on stochastic modeling in hydrology and related disciplines, the book offers valuable resources for researchers and professionals involved in the field of hydrology and climatology.
International experts from around the globe present a rich variety of intriguing developments in time series analysis in hydrology and environmental engineering. Climatic change is of great concern to everyone and significant contributions to this challenging research topic are put forward by internationally renowned authors. A range of interesting applications in hydrological forecasting are given for case studies in reservoir operation in North America, Asia and South America. Additionally, progress in entropy research is described and entropy concepts are applied to various water resource systems problems. Neural networks are employed for forecasting runoff and water demand. Moreover, graphical, nonparametric and parametric trend analyses methods are compared and applied to water quality time series. Other topics covered in this landmark volume include spatial analyses, spectral analyses and different methods for stream-flow modelling. Audience The book constitutes an invaluable resource for researchers, teachers, students and practitioners who wish to be at the forefront of time series analysis in the environmental sciences.