Download Free Elemental Graphene Analogues Book in PDF and EPUB Free Download. You can read online Elemental Graphene Analogues and write the review.

One of the greatest revolutions in materials science in recent years has been the literal renaissance of age-old materials in new and unexpected guises and possessing correspondingly astounding properties. There was once a time, for instance, when textbooks declared that only metals could offer any progress in superconduction. Since then, familiar perovskites – and even humble magnesium boride – have been recognised as being so-called ‘room-temperature’ superconductors. Carbon in particular has benefited from this revolution and has now found application as routinely deposited diamond coatings and as C60 ‘buckyballs’. The most recent innovation has been the discovery and preparation of graphene; single-monolayer carbon having a remarkable strength. This success has naturally led researchers to ask whether other materials might also be prepared in an analogous monolayer form and offer similarly amazing properties. The present monograph summarizes all of the work carried out on such monolayer materials up to the beginning of 2017, with attention being restricted to those, like graphene, being composed of a single element. Most of the work done so far on these ‘elemental graphene analogues’ has been theoretical, but the existing experimental data suggest that they may well become as useful as graphene.
This book reviews the current state-of-the art of single layer silicene up to thicker silicon nanosheets, and their structure, properties and potential applications. Silicene is a newly discovered material that is one atomic layer think. It is a two-dimensional (2D) nanomaterial that is classified as a nanosheet, which has large lateral dimensions up to micrometres, but thicknesses of only nanometres or less. Silicon nanosheets are currently a very ‘hot’ area of research. The unique properties and morphology of such materials make them ideal for a variety of applications, including electronic devices, batteries and sensors. 2D nanosheets of silicon can be considered as analogues of graphene. As silicon is already the major component of electronic devices, the significance of nanosheets composed of silicon is that they can be more easily integrated into existing electronic devices. Furthermore, if 2D nanostructured Si can be implemented into such devices, then their size could be reduced into the nano-regime, providing unique properties different from bulk Si that is currently employed. The book is written for researchers and graduate students.
Introduction to Graphene: Chemical and Biochemical Applications addresses a broad range of graphene research, including the prehistory and background of graphene, synthetic approaches, characterization techniques, composites/derivatives, inorganic graphene analogues, and applications of graphene. The book's special emphasis on solution chemistry and graphene sets it apart from less practical titles in that its concepts are immediately implementable in the laboratories of chemists and biochemists. The book presents a variety of experimental approaches from the authors' research laboratories and others around the world for graphene preparation in the solution phase, especially under aqueous conditions or in animal serum—the most practical kind of graphene for chemists and biochemists. The book is ideally suited for a broad range of readers, including advanced undergraduates, graduate research students and professionals in state-of-the-art research labs who want to use graphene to develop novel applications. - Features reviews of the most recent advances in graphene research across chemistry and biochemistry - Emphasizes chemical and biological applications for specialists, aiding more multi-disciplinary research - Presents a variety of experimental approaches for graphene preparation in the solution phase, especially under aqueous conditions or even in animal serum
Graphene, a single sheet of graphite, has an unconventional electronic structure that can be described in terms of massless Dirac Fermions. This book presents the frontiers of graphene research ranging from important issues in condensed matter physics and chemistry to advanced device applications.
Graphene’s nickname ‘miracle material’ normally means the material superior properties. However, all these characteristics are only the outward manifestation of the wonderful nature of graphene. The real miracle of graphene is that the specie is a union of two entities: a physical - and a chemical one, each of which is unique in its own way. The book concerns a very close interrelationship between graphene physics and chemistry as expressed via typical spin effects of a chemical physics origin. Based on quantum-chemical computations, the book is nevertheless addressed to the reflection of physical reality and it is aimed at an understanding of what constitutes graphene as an object of material science – sci graphene – on the one hand, and as a working material- high tech graphene - for a variety of attractive applications largely discussed and debated in the press, on the other. The book is written by a user of quantum chemistry, sufficiently experienced in material science, and the chemical physics of graphene is presented as the user view based on results of extended computational experiments in tight connection with their relevance to physical and chemical realities. The experiments have been carried out at the same theoretical platform, which allows considering different sides of the graphene life at the same level in light of its chemical peculiarity.
All set to become the standard reference on the topic, this book covers the most important procedures for chemical functionalization, making it an indispensable resource for all chemists, physicists, materials scientists and engineers entering or already working in the field. Expert authors share their knowledge on a wide range of different functional groups, including organic functional groups, hydrogen, halogen, nanoparticles and polymers.
Eleven carefully selected, peer-reviewed contributions from the Virtual Conference on Computational Science (VCCS-2016) are featured in this edited book of proceedings. VCCS-2016, an annual meeting, was held online from 1st to 31st August 2016. The theme of the conference was "Computational Thinking for the Advancement of Society" and it matched the paradigm shift in the way we think. VCCS-2016 was attended by 100 participants from 20 countries. The chapters reflect a wide range of fundamental and applied research applying computational methods.
In the past four decades, there has been growing interest in the exciting new topic of physics in low dimensions. Thousands of original ideas have been proposed in the literature, and some are confirmed experimentally, along with several Nobel prizes which have been awarded in this field. While there are several books available, almost all are technical and accessible only to expert researchers. This book provides an accessible introduction to the field, with less emphasis on technical details. Whilst this book does not provide a traditional history of nano-science, instead it uses simple explanations and case studies as vehicles to explain key discoveries and the importance of them, enabling readers without a background in the area to gain an understanding of some aspects of nanoscale physics. It will be of interest to researchers working in condensed matter physics, in addition to engineers and advanced students in those disciplines. It also remains accessible to ‘physics enthusiasts’ from other academic disciplines, as technical details are contained within boxes and footnotes which can be skipped for a general reading of the book. Features: - Provides an accessible introduction to a technical subject - Contains exciting developments from the cutting-edge science being conducted in the area - Authored by a recognised expert in the field
This book highlights recent development of ambipolar materials involving materials design, fundamental principles, interface modifications, device structures, characteristics and promising applications.
Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures provides a detailed discussion on the multiscale computational approach surrounding atomic, molecular and atomic-informed continuum models. In addition to a detailed theoretical description, this book provides example problems, sample code/script, and a discussion on how theoretical analysis provides insight into optimal experimental design. Furthermore, the book addresses the growth mechanism of these 2D materials, the formation of defects, and different lattice mismatch and interlayer interactions. Sections cover direct band gap, Raman scattering, extraordinary strong light matter interaction, layer dependent photoluminescence, and other physical properties. - Explains multiscale computational techniques, from atomic to continuum scale, covering different time and length scales - Provides fundamental theoretical insights, example problems, sample code and exercise problems - Outlines major characterization and synthesis methods for different types of 2D materials