Download Free Electronic Noses Book in PDF and EPUB Free Download. You can read online Electronic Noses and write the review.

Electronic Noses and Tongues in Food Science describes the electronic products of advanced chemical and physical sciences combined with intuitive integration of microprocessors, advanced bioinformatics and statistics. These include, for example, voltammetric, bio-electronic, piezoelectric platforms made from a variety of components including, nanoparticles, enzyme biosensors, heavy metals, graphite-epoxy composites, metal oxide semiconductors, microelectrodes, microfluidic channels, pre-manufactured gas sensors, redox enzymes and others and is an ideal resource for understanding and utilizing their power in Food Science settings. Devices used to analyse one particular food item can theoretically be adapted for other food items or components. This does not just mean the re-deploying the physical platforms but also the mode of bioinformatic and statistical analysis. This includes artificial neural networks (ANN), linear discriminant analysis (LDA), partial least squares (PLS), principal component analysis (PCA) etc. In other words, there is cross transference of chemistry, physics, concepts, techniques, findings and approaches from one food to another. Electronic noses and tongues are two of these devices but are advancing in application and importance. This book provides examples of the use of electronic noses and tongues to characterise components that contribute to sensory or compositional profiles, from ripening to harvesting and from storage of raw materials to packaging and consumption. These devises are suitable for high-throughput analysis, quality control or to determine the nature and extent of spoilage and adulteration, and have also been used to ascertain the geographical origins of food and mixtures. - Presents latest developments in the application of electronic nose and tongue technologies to a variety of food-specific needs - Includes both electronic nose, electronic tongue and combined technology insights - Each chapter has sections on: The physical and chemical platforms; Analysis of specific foods; Applications to other foods and areas of food science
Sensors and Sensory Systems for an Electronic Nose reviews the current state of progress in the development of an electronic instrument capable of olfaction. The instrument -- the so-called electronic nose -- has enormous potential for application in such areas as product flavor control and environmental monitoring. The book discusses the essential elements of an electronic nose, such as chemical sensors, signal processing, and pattern recoginiton techniques. It is also one of the first contributions to the new and exciting field of machine olfaction.
This book provides the basics of odor, odor analysis techniques, sensors used in odor analysis and overview of odor measurement techniques. For beginners as well researchers this book is a brief guide for odor measurement and analysis. The book includes a special chapter dedicated to practical implementation of e-nose sensor devices with software utility, which guides students to prepare projects and work in practical analysis. It also includes material from early to latest technology research available in the market of e-nose era. Students and researchers who want to learn the basics of biomedical engineering and sensor measurement technology will find this book useful.
This book presents the key technology of electronic noses, and systematically describes how e-noses can be used to automatically analyse odours. Appealing to readers from the fields of artificial intelligence, computer science, electrical engineering, electronics, and instrumentation science, it addresses three main areas: First, readers will learn how to apply machine learning, pattern recognition and signal processing algorithms to real perception tasks. Second, they will be shown how to make their algorithms match their systems once the algorithms don’t work because of the limitation of hardware resources. Third, readers will learn how to make schemes and solutions when the acquired data from their systems is not stable due to the fundamental issues affecting perceptron devices (e.g. sensors). In brief, the book presents and discusses the key technologies and new algorithmic challenges in electronic noses and artificial olfaction. The goal is to promote the industrial application of electronic nose technology in environmental detection, medical diagnosis, food quality control, explosive detection, etc. and to highlight the scientific advances in artificial olfaction and artificial intelligence. The book offers a good reference guide for newcomers to the topic of electronic noses, because it refers to the basic principles and algorithms. At the same time, it clearly presents the key challenges – such as long-term drift, signal uniqueness, and disturbance – and effective and efficient solutions, making it equally valuable for researchers engaged in the science and engineering of sensors, instruments, chemometrics, etc.
The design and study of materials is a pivotal component to new discoveries in the various fields of science and technology. By better understanding the components and structures of materials, researchers can increase its applications across different industries. Electronic Nose Technologies and Advances in Machine Olfaction is an academic scholarly resource that examines the emerging applications of odor-sensing devices as well as a better understanding of the designing process with the aid of neural networks and various other technologies. Featuring coverage on a broad range of topics including food spoilage detection, chemical sensing, and olfactometer, this book is a vital resource for engineers, academicians, researchers, students, and practitioners seeking current research on the advancements in applications of odor-sensing devices.
In developing the electronic nose and biosensor devices, researchers not only copy biochemical pathways, but also use nature's approach to signal interpretation as a blueprint for man-made sensing systems. Commercial biosensors have demonstrated their benefits and practical applications, providing high sensitivity and selectivity, combined with a significant reduction in sample preparation assay time and the use of expensive reagents. The Handbook of Biosensors and Electronic Noses discusses design and optimization for the multitude of practical uses of these devices including:
The international conference on Advances in Computing and Information technology (ACITY 2012) provides an excellent international forum for both academics and professionals for sharing knowledge and results in theory, methodology and applications of Computer Science and Information Technology. The Second International Conference on Advances in Computing and Information technology (ACITY 2012), held in Chennai, India, during July 13-15, 2012, covered a number of topics in all major fields of Computer Science and Information Technology including: networking and communications, network security and applications, web and internet computing, ubiquitous computing, algorithms, bioinformatics, digital image processing and pattern recognition, artificial intelligence, soft computing and applications. Upon a strength review process, a number of high-quality, presenting not only innovative ideas but also a founded evaluation and a strong argumentation of the same, were selected and collected in the present proceedings, that is composed of three different volumes.
This book aims to discuss the basic principles of an electronic nose, and to provide an account of recent developments in this field, with practical examples of its application. It seeks to review the field together with the many new developments that have occurred since the first meeting was held on electronic noses in Iceland in 1991. It will be essential reading for anyone who is working, researching or simply interested in electronic noses or machine olfaction. A comprehensive appendix is provided at the end of the book.
Electronic Noses and Olfaction 2000 reflects the state of progress toward the development and application of electronic instruments called electronic noses (e-noses). These instruments are generally based on arrays of sensors for volatile chemicals with broadly tuned selectivity, coupled to appropriate pattern recognition systems. They are capable of detecting and discriminating a number of different simple and complex odors, such as the headspace of coffee and olive oil, as well as being able to perform simple multicomponent gas analysis. Written by international scientists, engineers, technologists, clinicians, investigators, and instrument manufacturers working in the applied research of e-noses as well as in the applications of olfaction and taste, this volume is essential reading for anyone who wants a review of the latest developments in odor sensors, instrumentation and signal processing, and their medical, agricultural, and food-related applications.
Proceedings of the NATO Advanced Research Workshop, held in Warwick, Coventry, U.K., 30 September-3 October 2003