Download Free Electronic Design Automation Of Analog Ics Combining Gradient Models With Multi Objective Evolutionary Algorithms Book in PDF and EPUB Free Download. You can read online Electronic Design Automation Of Analog Ics Combining Gradient Models With Multi Objective Evolutionary Algorithms and write the review.

This book applies to the scientific area of electronic design automation (EDA) and addresses the automatic sizing of analog integrated circuits (ICs). Particularly, this book presents an approach to enhance a state-of-the-art layout-aware circuit-level optimizer (GENOM-POF), by embedding statistical knowledge from an automatically generated gradient model into the multi-objective multi-constraint optimization kernel based on the NSGA-II algorithm. The results showed allow the designer to explore the different trade-offs of the solution space, both through the achieved device sizes, or the respective layout solutions.
Improving the performance of existing technologies has always been a focal practice in the development of computational systems. However, as circuitry is becoming more complex, conventional techniques are becoming outdated and new research methodologies are being implemented by designers. Performance Optimization Techniques in Analog, Mix-Signal, and Radio-Frequency Circuit Design features recent advances in the engineering of integrated systems with prominence placed on methods for maximizing the functionality of these systems. This book emphasizes prospective trends in the field and is an essential reference source for researchers, practitioners, engineers, and technology designers interested in emerging research and techniques in the performance optimization of different circuit designs.
This volume comprises a selection of works presented at the Numerical and Evolutionary Optimization (NEO 2016) workshop held in September 2016 in Tlalnepantla, Mexico. The development of powerful search and optimization techniques is of great importance in today’s world and requires researchers and practitioners to tackle a growing number of challenging real-world problems. In particular, there are two well-established and widely known fields that are commonly applied in this area: (i) traditional numerical optimization techniques and (ii) comparatively recent bio-inspired heuristics. Both paradigms have their unique strengths and weaknesses, allowing them to solve some challenging problems while still failing in others. The goal of the NEO workshop series is to bring together experts from these and related fields to discuss, compare and merge their complementary perspectives in order to develop fast and reliable hybrid methods that maximize the strengths and minimize the weaknesses of the underlying paradigms. In doing so, NEO promotes the development of new techniques that are applicable to a broader class of problems. Moreover, NEO fosters the understanding and adequate treatment of real-world problems particularly in emerging fields that affect all of us, such as healthcare, smart cities, big data, among many others. The extended papers presented in the book contribute to achieving this goal.
The modern economy is driven by technologies and knowledge. Digital technologies can free, shift and multiply choices, often intruding on the space of other industries, by providing new ways of conducting business operations and creating values for customers and companies. The topics covered in this volume include software agents, multi-agent systems, agent modelling, mobile and cloud computing, big data analysis, business intelligence, artificial intelligence, social systems, computer embedded systems and nature inspired manufacturing, etc. that contribute to the modern Digital Economy. This volume highlights new trends and challenges in agent, new digital and knowledge economy research and includes 28 papers classified in the following specific topics: business process management, agent-based modeling and simulation, anthropic-oriented computing, learning paradigms, business informatics and gaming, digital economy, and advances in networked virtual enterprises. Published papers were selected for presentation at the 10th KES Conference on Agent and Multi-Agent Systems: Technologies and Applications (KES-AMSTA 2016) held in Puerto de la Cruz, Tenerife, Spain. Presented results would be of theoretical and practical value to researchers and industrial practitioners working in the fields of artificial intelligence, collective computational intelligence, innovative business models, new digital and knowledge economy and, in particular, agent and multi-agent systems, technologies, tools and applications.
This book introduces readers to a variety of tools for automatic analog integrated circuit (IC) sizing and optimization. The authors provide a historical perspective on the early methods proposed to tackle automatic analog circuit sizing, with emphasis on the methodologies to size and optimize the circuit, and on the methodologies to estimate the circuit’s performance. The discussion also includes robust circuit design and optimization and the most recent advances in layout-aware analog sizing approaches. The authors describe a methodology for an automatic flow for analog IC design, including details of the inputs and interfaces, multi-objective optimization techniques, and the enhancements made in the base implementation by using machine leaning techniques. The Gradient model is discussed in detail, along with the methods to include layout effects in the circuit sizing. The concepts and algorithms of all the modules are thoroughly described, enabling readers to reproduce the methodologies, improve the quality of their designs, or use them as starting point for a new tool. An extensive set of application examples is included to demonstrate the capabilities and features of the methodologies described.
Covering both the classical and emerging nanoelectronic technologies being used in mixed-signal design, this book addresses digital, analog, and memory components. Winner of the Association of American Publishers' 2016 PROSE Award in the Textbook/Physical Sciences & Mathematics category. Nanoelectronic Mixed-Signal System Design offers professionals and students a unified perspective on the science, engineering, and technology behind nanoelectronics system design. Written by the director of the NanoSystem Design Laboratory at the University of North Texas, this comprehensive guide provides a large-scale picture of the design and manufacturing aspects of nanoelectronic-based systems. It features dual coverage of mixed-signal circuit and system design, rather than just digital or analog-only. Key topics such as process variations, power dissipation, and security aspects of electronic system design are discussed. Top-down analysis of all stages--from design to manufacturing Coverage of current and developing nanoelectronic technologies--not just nano-CMOS Describes the basics of nanoelectronic technology and the structure of popular electronic systems Reveals the techniques required for design excellence and manufacturability
Optimierung mit mehreren Zielen, evolutionäre Algorithmen: Dieses Buch wendet sich vorrangig an Einsteiger, denn es werden kaum Vorkenntnisse vorausgesetzt. Geboten werden alle notwendigen Grundlagen, um die Theorie auf Probleme der Ingenieurtechnik, der Vorhersage und der Planung anzuwenden. Der Autor gibt auch einen Ausblick auf Forschungsaufgaben der Zukunft.
This book describes how evolutionary algorithms (EA), including genetic algorithms (GA) and particle swarm optimization (PSO) can be utilized for solving multi-objective optimization problems in the area of embedded and VLSI system design. Many complex engineering optimization problems can be modelled as multi-objective formulations. This book provides an introduction to multi-objective optimization using meta-heuristic algorithms, GA and PSO and how they can be applied to problems like hardware/software partitioning in embedded systems, circuit partitioning in VLSI, design of operational amplifiers in analog VLSI, design space exploration in high-level synthesis, delay fault testing in VLSI testing and scheduling in heterogeneous distributed systems. It is shown how, in each case, the various aspects of the EA, namely its representation and operators like crossover, mutation, etc, can be separately formulated to solve these problems. This book is intended for design engineers and researchers in the field of VLSI and embedded system design. The book introduces the multi-objective GA and PSO in a simple and easily understandable way that will appeal to introductory readers.
A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.
This book introduces readers to a variety of tools for analog layout design automation. After discussing the placement and routing problem in electronic design automation (EDA), the authors overview a variety of automatic layout generation tools, as well as the most recent advances in analog layout-aware circuit sizing. The discussion includes different methods for automatic placement (a template-based Placer and an optimization-based Placer), a fully-automatic Router and an empirical-based Parasitic Extractor. The concepts and algorithms of all the modules are thoroughly described, enabling readers to reproduce the methodologies, improve the quality of their designs, or use them as starting point for a new tool. All the methods described are applied to practical examples for a 130nm design process, as well as placement and routing benchmark sets.