Download Free Electromagnetic Wave Diffraction By Conducting Screens Book in PDF and EPUB Free Download. You can read online Electromagnetic Wave Diffraction By Conducting Screens and write the review.

This book covers the latest problems of modern mathematical methods for three-dimensional problems of diffraction by arbitrary conducting screens. This comprehensive study provides an introduction to methods of constructing generalized solutions, elements of potential theory, and other underlying mathematical tools. The problem settings, which turn out to be extremely effective, differ significantly from the known approaches and are based on the original concept of vector spaces 'produced' by Maxwell equations. The formalism of pseudodifferential operators enables to prove uniqueness theorems and the Fredholm property for all problems studied. Readers will gain essential insight into the state-of-the-art technique of investigating three-dimensional problems for closed and unclosed screens based on systems of pseudodifferential equations. A detailed treatment of the properties of their kernels, in particular degenerated, is included. Special attention is given to the study of smoothness of generalized solutions and properties of traces.
This book covers the latest problems of modern mathematical methods for three-dimensional problems of diffraction by arbitrary conducting screens. This comprehensive study provides an introduction to methods of constructing generalized solutions, elements of potential theory, and other underlying mathematical tools. The problem settings, which turn out to be extremely effective, differ significantly from the known approaches and are based on the original concept of vector spaces 'produced' by Maxwell equations. The formalism of pseudodifferential operators enables to prove uniqueness theorems and the Fredholm property for all problems studied. Readers will gain essential insight into the state-of-the-art technique of investigating three-dimensional problems for closed and unclosed screens based on systems of pseudodifferential equations. A detailed treatment of the properties of their kernels, in particular degenerated, is included. Special attention is given to the study of smoothness of generalized solutions and properties of traces.
Two alternative methods of aperture antenna analysis are described in this book.
Heterogeneous Media: Local Fields, Effective Properties, and Wave Propagation outlines new computational methods for solving volume integral equation problems in heterogeneous media. The book starts by surveying the various numerical methods of analysis of static and dynamic fields in heterogeneous media, listing their strengths and weaknesses, before moving onto an introduction of static and dynamic green functions for homogeneous media. Volume and surface integral equations for fields in heterogenous media are discussed next, followed by an overview of explicit formulas for numerical calculations of volume and surface potentials. The book then segues into Gaussian functions for discretization of volume integral equations for fields in heterogenous media, static problems for a homogeneous host medium with heterogeneous inclusions, volume integral equations for scattering problems, and concludes with a chapter outlining solutions to homogenization problems and calculations of effective properties of heterogeneous media. The book concludes with multiple appendices that feature the texts of basic programs for solving volume integral equations as written in Mathematica. - Outlines cutting-edge computational methods for solving volume integral equation problems in heterogeneous media - Provides applied examples of approximation and other methods being employed - Demonstrates calculation of composite material properties and the constitutive laws for averaged fields within them - Covers static and dynamic 2D and 3D mechanical-mathematical models for heterogeneous media
Antennas in Inhomogeneous Media details the methods of analyzing antennas in such inhomogeneous media. The title covers the complex geometrical configurations along with its variational formulations. The coverage of the text includes various conditions the antennas are subjected to, such as antennas in the interface between two media; antennas in compressible isotropic plasma; and linear antennas in a magnetoionic medium. The selection also covers insulated loops in lossy media; slot antennas with a stratified dielectric or isotropic plasma layers; and cavity-backed slot antennas. The book will be of great use to electrical, communications, and radio engineers.
Professor Jean Van Bladel, an eminent researcher and educator in fundamental electromagnetic theory and its application in electrical engineering, has updated and expanded his definitive text and reference on electromagnetic fields to twice its original content. This new edition incorporates the latest methods, theory, formulations, and applications that relate to today's technologies. With an emphasis on basic principles and a focus on electromagnetic formulation and analysis, Electromagnetic Fields, Second Edition includes detailed discussions of electrostatic fields, potential theory, propagation in waveguides and unbounded space, scattering by obstacles, penetration through apertures, and field behavior at high and low frequencies.
This is the first biography ever written on the distinguished physicist Julian Schwinger. Schwinger was one of the most important and influential scientists of the twentieth century. The list of his contributions is staggering, from his early work leading to the Schwinger action principle, Euclidean quantum field theory, and the genesis of the standard model, to later valuable work on magnetic charge and the Casimir effect. He also shared the 1965 Nobel Prize in Physics with Richard Feynman. However, even among physicists, understanding and recognition of his work remains limited. This book by Mehra and Milton, both of whom were personally acquainted with Schwinger, presents a unique portrait that sheds light on both his personality and his work through discussion of his lasting influence on science. Anyone who wishes to gain a deeper understanding of one of the great physicists of this century needs to read this book.
This book is the first complete and comprehensive description of the modern Physical Theory of Diffraction (PTD) based on the concept of elementary edge waves (EEWs). The theory is demonstrated with the example of the diffraction of acoustic and electromagnetic waves at perfectly reflecting objects. The derived analytic expressions clearly explain the physical structure of the scattered field and describe in detail all of the reflected and diffracted rays and beams, as well as the fields in the vicinity of caustics and foci. Shadow radiation, a new fundamental component of the field, is introduced and proven to contain half of the total scattered power.
This is the second edition of the book which has two additional new chapters on Maxwell’s equations as well as a section on properties of solution spaces of Maxwell’s equations and their trace spaces. These two new chapters, which summarize the most up-to-date results in the literature for the Maxwell’s equations, are sufficient enough to serve as a self-contained introductory book on the modern mathematical theory of boundary integral equations in electromagnetics. The book now contains 12 chapters and is divided into two parts. The first six chapters present modern mathematical theory of boundary integral equations that arise in fundamental problems in continuum mechanics and electromagnetics based on the approach of variational formulations of the equations. The second six chapters present an introduction to basic classical theory of the pseudo-differential operators. The aforementioned corresponding boundary integral operators can now be recast as pseudo-differential operators. These serve as concrete examples that illustrate the basic ideas of how one may apply the theory of pseudo-differential operators and their calculus to obtain additional properties for the corresponding boundary integral operators. These two different approaches are complementary to each other. Both serve as the mathematical foundation of the boundary element methods, which have become extremely popular and efficient computational tools for boundary problems in applications. This book contains a wide spectrum of boundary integral equations arising in fundamental problems in continuum mechanics and electromagnetics. The book is a major scholarly contribution to the modern approaches of boundary integral equations, and should be accessible and useful to a large community of advanced graduate students and researchers in mathematics, physics, and engineering.