Download Free Electromagnetic Radiation Properties Of Foods And Agricultural Products Book in PDF and EPUB Free Download. You can read online Electromagnetic Radiation Properties Of Foods And Agricultural Products and write the review.

This book demonstrates how imaging techniques, applying different frequency bands from the electromagnetic spectrum, are used in scientific research. Illustrated with numerous examples this book is structured according to the different radiation bands: From Gamma-rays over UV and IR to radio frequencies. In order to ensure a clear understanding of the processing methodologies, the text is enriched with descriptions of how digital images are formed, acquired, processed and how to extract information from them. A special emphasis is given to the application of imaging techniques in food and agriculture research.
The second of a seven-volume series, The Literature of the Agricultural Sciences, this book analyzes the trends in published literature of agricultural engineering during the past century with emphasis on the last forty years. It uses citation analysis and other bibliometric techniques to identify the most important journals, report series, and monographs for the developed countries as well as those in the Third World.
We can not talk about commodity production without building up all the operations after harvest. It is possible to market the products just after harvest, but it is only possible in small quantities. Postharvest handling is the ultimate stage in the process of producing quality fresh fruits and vegetables, getting these unique packages of water (fresh commodities) to the supper table. Fresh fruits and vegetables are succeptible to a number of postharvest disease and disorders and the postharvest operations are predominately aimed at maintaining harvest quality. Every step in the handling chain can influence the extent of disease and quality of the stored product. From planting to consumption, there are many opportu- ties for bacteria, viruses, and parasites to contaminate produce or nutrient deficiency level causing physiological disorders. Most of the storage rots are diseases that have originated in the field and have carried over onto commodities after harvest. Physiological disorders also arise from poor handling between harvest, storage and marketing. Treatments have a direct effect on inactivating or outright killing germinating spores, thus minimising rots. Prestorage treatment appears to be a promising method of postharvest control of decay. Pre-or-postharvest treatments of commodities are considered as potentiel alternatives for reducing the incidence of diseases, disorders, desinfestation of quarantine pests and for preserving food quality. Postharvest treatments lead to an alteration of gene expression and fruit ripening can sometimes be either delayed or disrupted.
This book is an invaluable introduction to the physical properties of foods and the physics involved in food processing. It provides descriptions and data that are needed for selecting the most appropriate equipment in food technology and for making food processing calculations.
The first edition of Food Processing Technology was quickly adopted as the standard text by many food science and technology courses. While keeping with the practice of covering the wide range of food processing techniques, this new edition has been substantially expanded to take account of the advances in technology that have taken place since the publication of the first edition. The Second Edition includes new chapters on computer control of processing, novel 'minimal' technologies, and Ohmic heating, and an extended chapter on modified atmosphere packaging. It is a comprehensive - yet basic - text that offers an overview of most unit operations, while at the same time providing details of the processing equipment, operating conditions and the effects of processing on the biochemistry of foods. The book is divided into five parts, in which unit operations are grouped according to the nature of the heat transfer that takes place. Each chapter describes the formulae required for calculation of processing parameters, sample problems, and the effects on sensory characteristics and nutritional properties of selected foods. By combining food processing theory and calculations with descriptions of commercial practice and results of scientific studies, Food Processing Technology: Principles and Practice, Second Edition helps readers make attractive saleable products and extend the shelf-life of foods.
Thermal processing remains one of the most important processes in the food industry. Now in its second edition, Thermal Food Processing: New Technologies and Quality Issues continues to explore the latest developments in the field. Assembling the work of a worldwide panel of experts, this volume highlights topics vital to the food industry today and pinpoints the trends in future research and development. Topics discussed include: Thermal properties of foods, including heat capacity, conductivity, diffusivity, and density Heat and mass transfer and related engineering principles, mechanisms, and models The development and application of deterministic heat transfer models for predicting internal product temperatures Modeling thermal processing using artificial neural networks (ANN) and computational fluid dynamics (CFD) Thermal processing of meat, poultry, fish, and dairy products; canned foods; ready meals; and vegetables The effect of ultrahigh temperature (UHT) treatment processing on milk, including the impact on nutrient composition, safety, and organoleptic aspects Ohmic, radio frequency (RF) dialectric, infrared, and pressure-assisted heating pH-assisted thermal processing In addition to updating all content, this second edition includes five new chapters: Thermal Effects in Food Microbiology, Modeling Thermal Microbial Inactivation Kinetics, Thermal Processing of Food and Fruit Juices, Aseptic Processing and Packaging, and Microwave Heating. The final chapter of the book examines systems used in the evaluation of thermal processes and the development of time temperature integrators (TTIs) to ensure the safety of thermally processed food. An up-to-date survey of essential techniques and the science behind them, this volume is a critical reference for food industry professionals.
The Handbook of Postharvest Technology presents methods in the manufacture and supply of grains, fruits, vegetables, and spices. It details the physiology, structure, composition, and characteristics of grains and crops. The text covers postharvest technology through processing, handling, drying and milling to storage, packaging, and distribution. Additionally, it examines cooling and preservation techniques used to maintain the quality and the decrease spoilage and withering of agricultural products.
Food properties, whether they concern the physical, thermodynamic, chemical, nutritional or sensory characteristics of foods, play an important role in food processing. In our quest to gain a mechanistic understanding of changes occurring during food processing, the knowledge of food properties is essential. Quantitative information on the food properties is necessary in the design and operation of food processing equipment. Foods, because of their biological nature and variability, vary in the magnitude of their properties. The variation in properties offer a challenge both in their measurement and use in the food processing applications. Often a high level of precision in measurement of properties is not possible as the measurement method may itself cause changes to the product, resulting in a variation in the obtained values. Recognizing the difficulties in measurement of food properties, and the lack of completeness of such information, several research programs have been in existence during the last two decades. In Europe, a multinational effort has been underway since 1978. The first project supported by COST (European Cooperation in the Field of Scientific and Technical Research), was titled COST 90 "The Effect of Processing on the Physical Properties of Foodstuffs". This and another project COST 90bis have considerably added to our knowledge of measurement methods and data on a number of physical properties. Two publications that summarize the work conducted under 1 2 these projects are Physical Properties of Foods and Physical Properties of Foods .
Food Engineering is a component of Encyclopedia of Food and Agricultural Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. Food Engineering became an academic discipline in the 1950s. Today it is a professional and scientific multidisciplinary field related to food manufacturing and the practical applications of food science. These volumes cover five main topics: Engineering Properties of Foods; Thermodynamics in Food Engineering; Food Rheology and Texture; Food Process Engineering; Food Plant Design, which are then expanded into multiple subtopics, each as a chapter. These four volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs