Download Free Electrified Mobility 2019 Book in PDF and EPUB Free Download. You can read online Electrified Mobility 2019 and write the review.

​This book defines and charts the barriers and future of vehicle-to-grid technology: a technology that could dramatically reduce emissions, create revenue, and accelerate the adoption of battery electric cars. This technology connects the electric power grid and the transportation system in ways that will enable electric vehicles to store renewable energy and offer valuable services to the electricity grid and its markets. To understand the complex features of this emergent technology, the authors explore the current status and prospect of vehicle-to-grid, and detail the sociotechnical barriers that may impede its fruitful deployment. The book concludes with a policy roadmap to advise decision-makers on how to optimally implement vehicle-to-grid and capture its benefits to society while attempting to avoid the impediments discussed earlier in the book.
Electrifying Mobility: Realising a Sustainable Future for the Car considers the drivers, barriers to adoption and the current lived experience of electric vehicles, drawing upon this experience to inform planning for mass adoption and how regulation might change to reflect the specific needs and challenges raised.
Electrification: Accelerating the Energy Transition offers a widely applicable framework to delineate context-sensitive pathways by which this transition can be accelerated and lists the types of processes and structures that may hinder progress towards this goal. The framework draws insights from well-established literature, ranging from technological studies to socio-technical studies of energy transitions, on to strategic niche management approaches, (international) political economy approaches, and institutionalist literatures, while also adopting wider social theoretical ideas from structuration theory. Contributors discuss a multitude of case studies drawn from global examples of electrification projects. Brief case studies and text boxes help users further understand this domain and the technological, infrastructural and societal structures that may exercise significant powers. - Proposes a globally applicable, inclusive framework linking together several literatures of energy transition research (ranging from the social sciences to law and engineering) - Assesses the regional and national applicability of solutions, covering the societal structures and interests that shape the prospects of their implementation - Extends the analysis from technological and infrastructural solutions to the policies required to accelerate transition - Introduces several country level case studies, thus demonstrating how to harness niches of innovation, kick-start the adoption of a solution, and make it mainstream
This book explains the basic and advanced technology behind the Power Electronics Converters for EV charging, and their significant developments, and introduces the Grid Impact issues that underpin the grid integration of electric vehicles. Advanced Concepts and Technologies for Electric Vehicles reviews state-of-the-art and new configurations and concepts of more electric vehicles and EV charging, mitigating the impact of EV charging on the power grid, and technical considerations of EV charging infrastructures. The book considers the environmental benefits and advantages of electric vehicles and their component devices. It includes case studies of different power electronic converters used for charging EVs. It offers a review of PFC-based AC chargers, WBG-based chargers, and Wireless chargers. The authors also explore multistage charging systems and their possible implementations. The book also examines the challenges and opportunities posed by the progressive integration of electric drive vehicles on the power grid and reported solutions for their mitigation. The book is intended for professionals, researchers, and engineers in the electric vehicle industry as well as advanced students in electrical engineering who benefit from this comprehensive coverage of electric vehicle technology. Readers can get an in-depth insight into the technology deployment in EV transportation and utilize that knowledge to develop novel ideas in the EV area.
Vehicle Electrification in Modern Power Grids: Disruptive Perspectives on Power Electronics Technology and Control Challenges collects the newest advances in technology for electric vehicle integration into one practical volume for professionals and advanced researchers. The book not only summarizes and clarifies legislation and grid codes for the area, but also outlines the modeling and analytical techniques needed, including predicting power converter reliability and its remaining useful life. Specializing in microgrid clusters, the book provides advanced power electronics device technology from wide-band-gap (WBG) to DSP-based digital control platforms and new materials for passive filters. Blending cutting-edge research and practical technology, this book provides a centralized resource for advanced researchers and engineers looking to accelerate vehicle electrification in the power grid. - Reveals new, disruptive power electronics and modeling technologies to enable EV integration into the grid - Collects guidance on mechanisms for digital control for EV charging and modes of operation, from V2G to G2H - Provides legislation and grid codes needed by engineers working on vehicle electrification in power grids
This book begins by discussing the problems caused by transportation emissions, the various types of emissions, and the impacts they have on public health, agricultural production, and climate change. The next several chapters then present technologies and policies from around the world, which can be used to solve some of these problems. Finally, the book discusses implications for the future, from both an industrial and governmental point of view.
This comprehensive reference text discusses simulation with case studies and realworld applications related to energy system models, the large-scale integration of renewable energy systems, electric vehicles, and energy storage systems. The text covers analysis and modeling of the large-scale integration of renewable energy systems, electric vehicles, and energy storage systems. It further discusses economic aspects useful for policy makers and industrial professionals. It covers important topics, including smart grids architectures, wide-area situational awareness (WASA), energy management systems (EMS), demand response (DR), smart grid standardization exertions, virtual power plants, battery degradation modeling, optimization approaches in modeling, and smart metering infrastructure. The book: Discusses the analysis and modeling of the large-scale integration of renewable energy systems, electric vehicles, and energy storage systems Covers issues and challenges encountered in the large-scale integration of electric vehicles, energy storage systems and renewable energy systems into future smart grid design Provides simulation with case studies and real-world applications related to energy system models, electric vehicles, and energy storage systems Discusses the integration of large renewable energy systems, with the presence of a large number of electric vehicles and storage devices/systems Discussing concepts of smart grids, together with the deployment of electric vehicles, energy storage systems and renewable energy systems, this text will be useful as a reference text for graduate students and academic researchers in the fields of electrical engineering, electronics and communication engineering, renewable energy, and clean technologies. It further discusses topics, including electric grid infrastructure, architecture, interfacing, standardization, protocols, security, reliability, communication, and optimal control.
The book continues with an experimental analysis conducted to obtain accurate and complete information about electric vehicles in different traffic situations and road conditions. For the experimental analysis in this study, three different electric vehicles from the Edinburgh College leasing program were equipped and tracked to obtain over 50 GPS and energy consumption data for short distance journeys in the Edinburgh area and long-range tests between Edinburgh and Bristol. In the following section, an adaptive and robust square root cubature Kalman filter based on variational Bayesian approximation and Huber’s M-estimation is proposed to accurately estimate state of charge (SOC), which is vital for safe operation and efficient management of lithium-ion batteries. A coupled-inductor DC-DC converter with a high voltage gain is proposed in the following section to match the voltage of a fuel cell stack to a DC link bus. Finally, the book presents a review of the different approaches that have been proposed by various authors to mitigate the impact of electric buses and electric taxis on the future smart grid.
Sustainable first/last/only-mile (FLO-mile) transport is the key to sustainable travel. It could directly replace private car use for short urban journeys, which account for 1% of global greenhouse gas emissions. More importantly, it could enable public transport to be used for longer journeys, which account for 6% of emissions. Active travel, such as walking and cycling, has the lowest emissions and provides huge economic benefits that pay for the required infrastructure many times over. Unsettled Issues Regarding First- and Last-Mile Transport discusses the mass switch to more sustainable modes of transport and how to increase their perceived value to users. It also covers the prioritization of publicly owned cycles over rideshare options due to the latter’s higher lifecycle emissions, including manufacture, redistribution, and service operations and station construction. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2021024