Download Free Electrical Stimulus Based Characterization For Calibration And Testing Of Mems Accelerometer And Gyroscope Book in PDF and EPUB Free Download. You can read online Electrical Stimulus Based Characterization For Calibration And Testing Of Mems Accelerometer And Gyroscope and write the review.

Micro-Electro Mechanical System (MEMS) is the micro-scale technology applying on various fields. Traditional testing strategy of MEMS requires physical stimulus, which leads to high cost specified equipment. Also there are a large number of wafer-level measurements for MEMS. A method of estimation calibration coefficient only by electrical stimulus based wafer level measurements is included in the thesis. Moreover, a statistical technique is introduced that can reduce the number of wafer level measurements, meanwhile obtaining an accurate estimate of unmeasured parameters. To improve estimation accuracy, outlier analysis is the effective technique and merged in the test flow. Besides, an algorithm for optimizing test set is included, also providing numerical estimated prediction error.
Testing and calibration constitute a significant part of the overall manufacturing cost of microelectromechanical system (MEMS) devices. Developing a low-cost testing and calibration scheme applicable at the user side that ensures the continuous reliability and accuracy is a crucial need. The main purpose of testing is to eliminate defective devices and to verify the qualifications of a product is met. The calibration process for capacitive MEMS devices, for the most part, entails the determination of the mechanical sensitivity. In this work, a physical-stimulus-free built-in-self-test (BIST) integrated circuit (IC) design characterizing the sensitivity of capacitive MEMS accelerometers is presented. The BIST circuity can extract the amplitude and phase response of the acceleration sensor's mechanics under electrical excitation within 0.55% of error with respect to its mechanical sensitivity under the physical stimulus. Sensitivity characterization is performed using a low computation complexity multivariate linear regression model. The BIST circuitry maximizes the use of existing analog and mixed-signal readout signal chain and the host processor core, without the need for computationally expensive Fast Fourier Transform (FFT)-based approaches. The BIST IC is designed and fabricated using the 0.18-μm CMOS technology. The sensor analog front-end and BIST circuitry are integrated with a three-axis, low-g capacitive MEMS accelerometer in a single hermetically sealed package. The BIST circuitry occupies 0.3 mm2 with a total readout IC area of 1.0 mm2 and consumes 8.9 mW during self-test operation.
Micro Electro Mechanical Systems (MEMS) is one of the fastest growing field in silicon industry. Low cost production is key for any company to improve their market share. MEMS testing is challenging since input to test a MEMS device require physical stimulus like acceleration, pressure etc. Also, MEMS device vary with process and requires calibration to make them reliable. This increases test cost and testing time. This challenge can be overcome by combining electrical stimulus based testing along with statistical analysis on MEMS response for electrical stimulus and also limited physical stimulus response data. This thesis proposes electrical stimulus based built in self test(BIST) which can be used to get MEMS data and later this data can be used for statistical analysis. A capacitive MEMS accelerometer is considered to test this BIST approach. This BIST circuit overhead is less and utilizes most of the standard readout circuit. This thesis discusses accelerometer response for electrical stimulus and BIST architecture. As a part of this BIST circuit, a second order sigma delta modulator has been designed. This modulator has a sampling frequency of 1MHz and bandwidth of 6KHz. SNDR of 60dB is achieved with 1Vpp differential input signal and 3.3V supply.
Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc. This Special Issue on "MEMS Accelerometers" seeks to highlight research papers, short communications, and review articles that focus on: Novel designs, fabrication platforms, characterization, optimization, and modeling of MEMS accelerometers. Alternative transduction techniques with special emphasis on opto-mechanical sensing. Novel applications employing MEMS accelerometers for consumer electronics, industries, medicine, entertainment, navigation, etc. Multi-physics design tools and methodologies, including MEMS-electronics co-design. Novel accelerometer technologies and 9DoF IMU integration. Multi-accelerometer platforms and their data fusion.
The applications which use MEMS accelerometer have been on rise and many new fields which are using the MEMS devices have been on rise. The industry is trying to reduce the cost of production of these MEMS devices. These devices are manufactured using micromachining and the interface circuitry is manufactured using CMOS and the final product is integrated on to a single chip. Amount spent on testing of the MEMS devices make up a considerable share of the total final cost of the device. In order to save the cost and time spent on testing, researchers have been trying to develop different methodologies. At present, MEMS devices are tested using mechanical stimuli to measure the device parameters and for calibration the device. This testing is necessary since the MEMS process is not a very well controlled process unlike CMOS. This is done using an ATE and the cost of using ATE (automatic testing equipment) contribute to 30-40% of the devices final cost. This thesis proposes an architecture which can use an Electrical Signal to stimulate the MEMS device and use the data from the MEMS response in approximating the calibration coefficients efficiently. As a proof of concept, we have designed a BIST (Built-in self-test) circuit for MEMS accelerometer. The BIST has an electrical stimulus generator, Capacitance-to-voltage converter, ∑ ∆ ADC. This thesis explains in detail the design of the Electrical stimulus generator. We have also designed a technique to correlate the parameters obtained from electrical stimuli to those obtained by mechanical stimuli. This method is cost effective since the additional circuitry needed to implement BIST is less since the technique utilizes most of the existing standard readout circuitry already present.
Inertial navigation is widely used for the guidance of aircraft, missiles ships and land vehicles, as well as in a number of novel applications such as surveying underground pipelines in drilling operations. This book discusses the physical principles of inertial navigation, the associated growth of errors and their compensation. It draws current technological developments, provides an indication of potential future trends and covers a broad range of applications. New chapters on MEMS (microelectromechanical systems) technology and inertial system applications are included.
The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology.The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS.With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy
MEMS sensors and actuators are enabling components for smartphones, AR/VR, and wearable electronics. MEMS packaging is recognized as one of the most critical activities to design and manufacture reliable MEMS. A unique challenge to MEMS packaging is how to protect moving MEMS devices during manufacturing and operation. With the introduction of wafer level capping and encapsulation processes, this barrier is removed successfully. In addition, MEMS devices should be integrated with their electronic chips with the smallest footprint possible. As a result, 3D packaging is applied to connect the devices vertically for the most effective integration. Such 3D packaging also paves the way for further heterogenous integration of MEMS devices, electronics, and other functional devices.This book consists of chapters written by leaders developing products in a MEMS industrial setting and faculty members conducting research in an academic setting. After an introduction chapter, the practical issues are covered: through-silicon vias (TSVs), vertical interconnects, wafer level packaging, motion sensor-to-CMOS bonding, and use of printed circuit board technology to fabricate MEMS. These chapters are written by leaders developing MEMS products. Then, fundamental issues are discussed, topics including encapsulation of MEMS, heterogenous integration, microfluidics, solder bonding, localized sealing, microsprings, and reliability.