Download Free Elastic Constants Of Nanometer Thick Diamond Like Carbon Films Book in PDF and EPUB Free Download. You can read online Elastic Constants Of Nanometer Thick Diamond Like Carbon Films and write the review.

Carbon films of thickness down to 2 nanometers are necessary to achieve a storage density of 100 Gbit/in(exp2) in magnetic hard disks. Reliable methods to measure the properties of these ultrathin films still have to be developed. We show for the first time that combining Surface Brillouin Scattering (SBS) and X-ray reflectivity measurements the elastic constants of such films can be obtained. Tetrahedral amorphous carbon films were deposited on silicon, by an S bend filtered cathodic vacuum arc, which provides a continuous coverage on large areas free of macroparticles. Films of thickness down to 2 nm and density of ^3 g/cm(exp3) were produced and characterized. The dispersion relations of surface acoustic waves are measured by SBS for films of different thickness and for the bare substrate. Waves can be described by a continuum elastic model. Fitting of the dispersion relations, computed for given film properties, to the measured dispersion relations allows the derivation of the elastic constants. For a 8 nm thick film we find a Young's modulus E around 400 GPa, with a shear modulus G lying in the 130-210 GPa interval. For a 4.5 nm thick film, E is around 240 GPa, with 0 lying in the 70 - 130 GPa interval. Results for even thinner films become highly sensitive to the precision of the substrate properties, and indicate that the above values are lower bounds. We thus show that we can grow and characterize nanometer size tetrahedral amorphous carbon films, which maintain their density and mechanical properties down to the nm range.
This book highlights some of the most important structural, chemical, mechanical and tribological characteristics of DLC films. It is particularly dedicated to the fundamental tribological issues that impact the performance and durability of these coatings. The book provides reliable and up-to-date information on available industrial DLC coatings and includes clear definitions and descriptions of various DLC films and their properties.
This the second volume of six from the Annual Conference of the Society for Experimental Mechanics, 2010, brings together 40 chapters on Microelectromechanical Systems and Nanotechnology. It presents early findings from experimental and computational investigations on MEMS and Nanotechnology including contributions on Nanomechanical Standards, Magneto-mechanical MEMS Sensors, Piezoelectric MEMS for Energy Harvesting, and Linear and Nonlinear Mass Sensing.
Diamond-like carbons (DLCs) display a number of attractive properties that make them versatile coating materials for a variety of applications, including extremely high hardness values, very low friction properties, very low gas permeability, good biocompatibility, and very high electrical resistivity, among others. Further research into this material is required to produce hydrogen-free DLC films and to synthesize it together with other materials, thereby obtaining better film properties. Diamond-Like Carbon Coatings: Technologies and Applications examines emerging manufacturing technologies for DLCs with the aim of improving their properties for use in practical applications. Discusses DLC coatings used in mechanical, manufacturing, and medical applications Details recent developments in the novel synthesis of DLC films Covers advances in understanding of chemical, structural, physical, mechanical, and tribological properties for modern material processing Highlights methods to yield longer service life Considers prospects for future applications of emerging DLC technologies This work is aimed at materials science and engineering researchers, advanced students, and industry professionals.
Diamond films grown by activated chemical vapor deposition have superlative thermal, mechanical, optical, and electronic properties combined with a very high degree of chemical inertness to most environments. These properties, together with the ability to fabricate films and shapes of considerable size, promise an exciting new material with many applications. Some applications are on the verge of commercialization but many await a few more technological developments. Diamond-like films are already employed in both commercial and military applications. The popular press, as well as the scientific and technological and industrial communities, are increasingly interested in the potential for future development of these materials. Although there are many technical papers and review articles published, there is no Single comprehensive introduction to these technologies. The Scientific Affairs Division of NATO recognized the need and the future importance of these technologies and authorized an Advanced Study Institute on diamond and diamond-like films. NATO Advanced Study Institutes are high level teaching activities at which a carefully defined subject is presented in a systematic and coherently structured program. The subject is treated in considerable depth by lecturers eminent in their fields and of international standing. The presentations are made to students who are scientists in the field or who possess an advanced general scientific background.
World experts in amorphous carbon have been drawn together to produce this comprehensive commentary on the current state and future prospects of amorphous carbon, a highly functional material. Amorphous carbon has a wide range of properties that are primarily controlled by the different bond hybridisations possible in such materials. This allows for the growth of an extensive range of thin films that can be tailored for specific applications. Films can range from those with high transparency and which are hard and diamond-like, through to those which are opaque, soft and graphitic-like. Application areas including field emission cathodes, MEMs, electronic devices, medical and optical coatings are now close to market.
Most books on nondestructive evaluation (NDE) focus either on the theoretical background or on advanced applications. Bridging the gap between the two, Ultrasonic and Electromagnetic NDE for Structure and Material Characterization: Engineering and Biomedical Applications brings together the principles, equations, and applications of ultrasonic and
There has been tremendous development in the science of carbon in past years. First came the development of the chemical vapor deposition of diamond, followed by the discovery of a new class of molecules - the fullerenes. Carbon nanotubes were discovered and techniques were developed to deposit new phases of amorphous carbon containing mainly sp3 bonding. This book brings together scientists and engineers from all areas of carbon research, both sp2 and sp3 bonded, from the fully amorphous to nanostructured carbon, to the highly ordered nanotubes. It covers a range of subjects including the synthesis and properties of nanotubes, as well as diamond-like carbon deposition and properties. Applications range from nanotubes for hydrogen storage, to electrochemical double-layer capacitors (supercapacitors), field emission displays, hard coatings, and carbon coatings for magnetic storage technology. The book deals with the growth, characterization, properties and applications of nanotubes and field emission from all varieties of carbon, amorphous and diamond-like carbon- growth, properties and applications. It also contains papers on diamond, silicon carbide, carbon nitride and beryllium films.
This book presents current research from across the globe in the study of diamond-like carbon films. Topics discussed include the peculiarities of ion-beam synthesis of carbon-based phases; electron field emission properties of non-metal and metal doped diamond like carbon; internal stress and its reduction of hydrogenated diamond-like carbon thin films deposited by plasma CVD methods; incorporating crystalline diamond particles in diamond-like carbon films to improve their properties and diamond-like carbon films applied as an alignment layer for LCDs.