Download Free Efficient Organic Light Emitting Diodes Oleds Book in PDF and EPUB Free Download. You can read online Efficient Organic Light Emitting Diodes Oleds and write the review.

This monograph on organic light emitting diodes, edited by a pioneer, and written by front-line researchers from academia and industry, provides access to the latest findings in this rapidly growing field. More than ten contributions cover all areas -- from theory and basic principles, to different emitter materials and applications in production.
Dieses Fachbuch eines Pioniers in diesem schnell wachsenden Fachbereich fasst die jüngsten Erkenntnisse zur Optimierung von OLEDs zusammen. Die Theorie wird ausführlich beschrieben, ebenso verschiedene organische und anorganische emittierende Materialien, Display- und Lichtanwendungen.
A Comprehensive Source for Taking on the Next Stage of OLED R&DOLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes brings together key topics across the field of organic light-emitting diodes (OLEDs), from fundamental chemistry and physics to practical materials science and engineering aspects to design and ma
Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes (TADF-OLEDs) comprehensively introduces the history of TADF, along with a review of fundamental concepts. Then, TADF emitters with different colors, such as blue, green, red and NIR as well as white OLEDs are discussed in detail. Other sections cover exciplex-type TADF materials, emerging application of TADF emitters as a host in OLEDs, and applications of TADF materials in organic lasers and biosensing. - Discusses green, blue, red, NIR and white TADF emitters and their design strategies for improved performance for light-emitting diode applications - Addresses emerging materials, such as molecular and exciplex-based TADF materials - Includes emerging applications like lasers and biosensors
This volume reviews the latest trends in organic optoelectronic materials. Each comprehensive chapter allows graduate students and newcomers to the field to grasp the basics, whilst also ensuring that they have the most up-to-date overview of the latest research. Topics include: organic conductors and semiconductors; conducting polymers and conjugated polymer semiconductors, as well as their applications in organic field-effect-transistors; organic light-emitting diodes; and organic photovoltaics and transparent conducting electrodes. The molecular structures, synthesis methods, physicochemical and optoelectronic properties of the organic optoelectronic materials are also introduced and described in detail. The authors also elucidate the structures and working mechanisms of organic optoelectronic devices and outline fundamental scientific problems and future research directions. This volume is invaluable to all those interested in organic optoelectronic materials.
Principles and Applications of Organic Light Emitting Diodes (OLEDs)explores the ways in which the development of organic semiconductor materials is opening up new applications in electronic and optoelectronic luminescent devices. The book begins by covering the principles of luminescence and the luminescent properties of organic semiconductors. It then covers the development of luminescent materials for OLEDs, discussing the advantages and disadvantages of organic versus inorganic luminescent materials. The fabrication and characterization of OLEDs is also covered in detail, including information on, and comparisons of, vacuum deposition and solution techniques. Finally, applications of OLEDs are explored, including OLEDs in solid-state lighting, colored lighting, displays and potential future applications, such as ultra-thin and flexible technologies. This book is an excellent resource both for experts and newcomers to the field of organic optoelectronics and OLEDs. It is ideal for scientists working on optical devices, lighting, display and imaging technologies, and for all those engaged in research in photonics, luminescence and optical materials. - Provides a one-stop guide to OLED technology for the benefit of newcomers to the field of organic optoelectronics - Comprehensively covers the luminescent properties of organic semiconductors and their development into OLED materials - Offers practical information on OLED fabrication and their applications in solid-state lighting and displays, making this essential reading for optoelectronics engineers and materials scientists
Following two decades of intense research globally, the organic light-emitting diode (OLED) has steadily emerged as the ultimate display technology of choice for the coming decades. Portable active matrix OLED displays have already become prevalent, and even large-sized ultra-high definition 4K TVs are being mass-produced. More exotic applications
Organic Light-Emitting Materials and Devices provides a single source of information covering all aspects of OLEDs, including the systematic investigation of organic light-emitting materials, device physics and engineering, and manufacturing and performance measurement techniques. This Second Edition is a compilation of the advances made in recent years and of the challenges facing the future development of OLED technology. Featuring chapters authored by internationally recognized academic and industrial experts, this authoritative text: Introduces the history, fundamental physics, and potential applications of OLEDs Reviews the synthesis, properties, and device performance of electroluminescent materials used in OLEDs Reflects the current state of molecular design, exemplifying more than 600 light-emitting polymers and highlighting the most efficient materials and devices Explores small molecules-based OLEDs, detailing hole- and electron-injection and electron-transport materials, electron- and hole-blocking materials, sensitizers, and fluorescent and phosphorescent light-emitting materials Describes solution-processable phosphorescent polymer LEDs, energy transfer processes, polarized OLEDs, anode materials, and vapor deposition manufacturing techniques employed in OLED fabrication Discusses flexible display, the backplane circuit technology for organic light-emitting displays, and the latest microstructural characterization and performance measurement techniques Contains abundant diagrams, device configurations, and molecular structures clearly illutrating the presented ideas Organic Light-Emitting Materials and Devices, Second Edition offers a comprehensive overview of the OLED field and can serve as a primary reference for those needing additional information in any particular subarea of organic electroluminescence. This book should attract the attention of materials scientists, synthetic chemists, solid-state physicists, and electronic device engineers, as well as industrial managers and patent lawyers engaged in OLED-related business areas.
Provides an overview of the developments and applications of Organic Light Emitting Transistors (OLETs) science and technology This book discusses the scientific fundamentals and key technological features of Organic Light Emitting Transistors (OLETs) by putting them in the context of organic electronics and photonics. The characteristics of OLETs are benchmarked to those of OLEDs for applications in Flat Panel Displays and sensing technology. The authors provide a comparative analysis between OLED and OLET devices in order to highlight the fundamental differences in terms of device architecture and working principles, and to point out the enabling nature of OLETs for truly flexible displays. The book then explores the principles of OLET devices, their basic optoelectronic characteristics, the properties of currently available materials, processing and fabrication techniques, and the different approaches adopted to structure the active channel and to control organic and hybrid interfaces. Examines the photonic properties of OLETs, focusing on the external quantum efficiency, the brightness, the light outcoupling, and emission directionality Analyzes the charge transport and photophysical properties of OLET, emphasizing the excitonic properties and spatial emitting characteristics Reviews the key building blocks of the OLET devices and their role in determining the device’s performance Discusses the challenges in OLET design, namely color gamut, power efficiency, and reliability Presents key applications of OLET devices and their potential impact on display technology and sensing Organic Light-Emitting Transistors: Towards the Next Generation Display Technology serves as a reference for researchers, technology developers and end-users to have a broad view of the distinguishing features of the OLET technology and to profile the impact on the display and sensing markets.
Polymers for Light-Emitting Devices and Displays provides an in-depth overview of fabrication methods and unique properties of polymeric semiconductors, and their potential applications for LEDs including organic electronics, displays, and optoelectronics. Some of the chapter subjects include: • The newest polymeric materials and processes beyond the classical structure of PLED • Conjugated polymers and their application in the light-emitting diodes (OLEDs & PLEDs) as optoelectronic devices. • The novel work carried out on electrospun nanofibers used for LEDs. • The roles of diversified architectures, layers, components, and their structural modifications in determining efficiencies and parameters of PLEDs as high-performance devices. • Polymer liquid crystal devices (PLCs), their synthesis, and applications in various liquid crystal devices (LCs) and displays. • Reviews the state-of-art of materials and technologies to manufacture hybrid white light-emitting diodes based on inorganic light sources and organic wavelength converters.