Download Free Efficient Nonlinear Adaptive Filters Book in PDF and EPUB Free Download. You can read online Efficient Nonlinear Adaptive Filters and write the review.

This book presents the design, analysis, and application of nonlinear adaptive filters with the goal of improving efficient performance (ie the convergence speed, steady-state error, and computational complexity). The authors present a nonlinear adaptive filter, which is an important part of nonlinear system and digital signal processing and can be applied to diverse fields such as communications, control power system, radar sonar, etc. The authors also present an efficient nonlinear filter model and robust adaptive filtering algorithm based on the local cost function of optimal criterion to overcome non-Gaussian noise interference. The authors show how these achievements provide new theories and methods for robust adaptive filtering of nonlinear and non-Gaussian systems. The book is written for the scientist and engineer who are not necessarily an expert in the specific nonlinear filtering field but who want to learn about the current research and application. The book is also written to accompany a graduate/PhD course in the area of nonlinear system and adaptive signal processing.
Teaches students about classical and nonclassical adaptive systems within one pair of covers Helps tutors with time-saving course plans, ready-made practical assignments and examination guidance The recently developed "practical sub-space adaptive filter" allows the reader to combine any set of classical and/or non-classical adaptive systems to form a powerful technology for solving complex nonlinear problems
This book was written in response to the growing demand for a text that provides a unified treatment of linear and nonlinear complex valued adaptive filters, and methods for the processing of general complex signals (circular and noncircular). It brings together adaptive filtering algorithms for feedforward (transversal) and feedback architectures and the recent developments in the statistics of complex variable, under the powerful frameworks of CR (Wirtinger) calculus and augmented complex statistics. This offers a number of theoretical performance gains, which is illustrated on both stochastic gradient algorithms, such as the augmented complex least mean square (ACLMS), and those based on Kalman filters. This work is supported by a number of simulations using synthetic and real world data, including the noncircular and intermittent radar and wind signals.
Adaptive Learning Methods for Nonlinear System Modeling presents some of the recent advances on adaptive algorithms and machine learning methods designed for nonlinear system modeling and identification. Real-life problems always entail a certain degree of nonlinearity, which makes linear models a non-optimal choice. This book mainly focuses on those methodologies for nonlinear modeling that involve any adaptive learning approaches to process data coming from an unknown nonlinear system. By learning from available data, such methods aim at estimating the nonlinearity introduced by the unknown system. In particular, the methods presented in this book are based on online learning approaches, which process the data example-by-example and allow to model even complex nonlinearities, e.g., showing time-varying and dynamic behaviors. Possible fields of applications of such algorithms includes distributed sensor networks, wireless communications, channel identification, predictive maintenance, wind prediction, network security, vehicular networks, active noise control, information forensics and security, tracking control in mobile robots, power systems, and nonlinear modeling in big data, among many others. This book serves as a crucial resource for researchers, PhD and post-graduate students working in the areas of machine learning, signal processing, adaptive filtering, nonlinear control, system identification, cooperative systems, computational intelligence. This book may be also of interest to the industry market and practitioners working with a wide variety of nonlinear systems. - Presents the key trends and future perspectives in the field of nonlinear signal processing and adaptive learning. - Introduces novel solutions and improvements over the state-of-the-art methods in the very exciting area of online and adaptive nonlinear identification. - Helps readers understand important methods that are effective in nonlinear system modelling, suggesting the right methodology to address particular issues.
Information Technology (IT) is the application of computers and telecommunications equipment to store, retrieve, transmit and manipulate data, often in the context of a business or other enterprise. IT has become one of the most fundamental technologies in today‘s social life, and there are many unsolved issues related to IT and its applications.Th
Adaptive filtering is a topic of immense practical and theoretical value, having applications in areas ranging from digital and wireless communications to biomedical systems. This book enables readers to gain a gradual and solid introduction to the subject, its applications to a variety of topical problems, existing limitations, and extensions of current theories. The book consists of eleven parts?each part containing a series of focused lectures and ending with bibliographic comments, problems, and computer projects with MATLAB solutions.
A spline adaptive filter (SAF) based nonlinear active noise control (ANC) system is proposed in this paper. The SAF consists of a linear network of adaptive weights in a cascade with an adaptive nonlinear network. The nonlinear network, in turn consists of an adaptive look-up table followed by a spline interpolation network and forms an adaptive activation function. An update rule has been derived for the proposed ANC system, which not only updates the weights of the linear network, but also updates the nature of the activation function. Linear Network is based on improvement in FxLMS algorithm. FxLMS algorithm is used because it is computationally simple like the most commonly used Least Mean Square (LMS) algorithm. In addition, it includes secondary path effects. To make the FxLMS algorithm more effective, the secondary path estimation should be more precise and accurate. The nonlinear function involved in the adaptation process is based on a spline function that can be modified during learning. The spline control points are adaptively changed using gradient-based techniques. B-splines and Catmull-Rom splines are used, because they allow imposing simple constraints on control parameters. This new kind of adaptive function is then applied to the output of a linear adaptive filter and it is used for the identification of Wiener-type nonlinear systems. In addition, we derive a simple form of the adaptation algorithm and an upper bound on the choice of the step-size. An extensive simulation study has been conducted to evaluate the noise mitigation performance of the proposed scheme and the new method has been shown to provide improved noise cancellation efficiency with a lesser computational load in comparison with other popular ANC systems.
Efficient Single Board Computers (SBCs) and advanced VLSI systems have resulted in edge analytics and faster decision making. The QoS parameters like energy, delay, reliability, security, and throughput should be improved on seeking better intelligent expert systems. The resource constraints in the Edge devices, challenges the researchers to meet the required QoS. Since these devices and components work in a remote unattended environment, an optimum methodology to improve its lifetime has become mandatory. Continuous monitoring of events is mandatory to avoid tragic situations; it can only be enabled by providing high QoS. The applications of IoT in digital twin development, health care, traffic analysis, home surveillance, intelligent agriculture monitoring, defense and all common day to day activities have resulted in pioneering embedded devices, which can offer high computational facility without much latency and delay. The book address industrial problems in designing expert system and IoT applications. It provides novel survey and case study report on recent industrial approach towards Smart City development.
Computational modeling and simulation has developed and expanded into a diverse range of fields such as digital signal processing, image processing, robotics, systems biology, and many more; enhancing the need for a diversifying problem solving applications in this area. Efficiency and Scalability Methods for Computational Intellect presents various theories and methods for approaching the problem of modeling and simulating intellect in order to target computation efficiency and scalability of proposed methods. Researchers, instructors, and graduate students will benefit from this current research and will in turn be able to apply the knowledge in an effective manner to gain an understanding of how to improve this field.
This monograph presents recent advances in differential flatness theory and analyzes its use for nonlinear control and estimation. It shows how differential flatness theory can provide solutions to complicated control problems, such as those appearing in highly nonlinear multivariable systems and distributed-parameter systems. Furthermore, it shows that differential flatness theory makes it possible to perform filtering and state estimation for a wide class of nonlinear dynamical systems and provides several descriptive test cases. The book focuses on the design of nonlinear adaptive controllers and nonlinear filters, using exact linearization based on differential flatness theory. The adaptive controllers obtained can be applied to a wide class of nonlinear systems with unknown dynamics, and assure reliable functioning of the control loop under uncertainty and varying operating conditions. The filters obtained outperform other nonlinear filters in terms of accuracy of estimation and computation speed. The book presents a series of application examples to confirm the efficiency of the proposed nonlinear filtering and adaptive control schemes for various electromechanical systems. These include: · industrial robots; · mobile robots and autonomous vehicles; · electric power generation; · electric motors and actuators; · power electronics; · internal combustion engines; · distributed-parameter systems; and · communication systems. Differential Flatness Approaches to Nonlinear Control and Filtering will be a useful reference for academic researchers studying advanced problems in nonlinear control and nonlinear dynamics, and for engineers working on control applications in electromechanical systems.