Download Free Efficient Nonlinear Adaptive Filtering Using The Wiener Hammerstein System Model Book in PDF and EPUB Free Download. You can read online Efficient Nonlinear Adaptive Filtering Using The Wiener Hammerstein System Model and write the review.

This book presents the design, analysis, and application of nonlinear adaptive filters with the goal of improving efficient performance (ie the convergence speed, steady-state error, and computational complexity). The authors present a nonlinear adaptive filter, which is an important part of nonlinear system and digital signal processing and can be applied to diverse fields such as communications, control power system, radar sonar, etc. The authors also present an efficient nonlinear filter model and robust adaptive filtering algorithm based on the local cost function of optimal criterion to overcome non-Gaussian noise interference. The authors show how these achievements provide new theories and methods for robust adaptive filtering of nonlinear and non-Gaussian systems. The book is written for the scientist and engineer who are not necessarily an expert in the specific nonlinear filtering field but who want to learn about the current research and application. The book is also written to accompany a graduate/PhD course in the area of nonlinear system and adaptive signal processing.
Adaptive Learning Methods for Nonlinear System Modeling presents some of the recent advances on adaptive algorithms and machine learning methods designed for nonlinear system modeling and identification. Real-life problems always entail a certain degree of nonlinearity, which makes linear models a non-optimal choice. This book mainly focuses on those methodologies for nonlinear modeling that involve any adaptive learning approaches to process data coming from an unknown nonlinear system. By learning from available data, such methods aim at estimating the nonlinearity introduced by the unknown system. In particular, the methods presented in this book are based on online learning approaches, which process the data example-by-example and allow to model even complex nonlinearities, e.g., showing time-varying and dynamic behaviors. Possible fields of applications of such algorithms includes distributed sensor networks, wireless communications, channel identification, predictive maintenance, wind prediction, network security, vehicular networks, active noise control, information forensics and security, tracking control in mobile robots, power systems, and nonlinear modeling in big data, among many others. This book serves as a crucial resource for researchers, PhD and post-graduate students working in the areas of machine learning, signal processing, adaptive filtering, nonlinear control, system identification, cooperative systems, computational intelligence. This book may be also of interest to the industry market and practitioners working with a wide variety of nonlinear systems. - Presents the key trends and future perspectives in the field of nonlinear signal processing and adaptive learning. - Introduces novel solutions and improvements over the state-of-the-art methods in the very exciting area of online and adaptive nonlinear identification. - Helps readers understand important methods that are effective in nonlinear system modelling, suggesting the right methodology to address particular issues.
The volume is a collection of best selected research papers presented at International Conference on Advances in Data-driven Computing and Intelligent Systems (ADCIS 2022) held at BITS Pilani, K K Birla Goa Campus, Goa, India during 23 – 25 September 2022. It includes state-of-the art research work in the cutting-edge technologies in the field of data science and intelligent systems. The book presents data-driven computing; it is a new field of computational analysis which uses provided data to directly produce predictive outcomes. The book will be useful for academicians, research scholars, and industry persons.
A spline adaptive filter (SAF) based nonlinear active noise control (ANC) system is proposed in this paper. The SAF consists of a linear network of adaptive weights in a cascade with an adaptive nonlinear network. The nonlinear network, in turn consists of an adaptive look-up table followed by a spline interpolation network and forms an adaptive activation function. An update rule has been derived for the proposed ANC system, which not only updates the weights of the linear network, but also updates the nature of the activation function. Linear Network is based on improvement in FxLMS algorithm. FxLMS algorithm is used because it is computationally simple like the most commonly used Least Mean Square (LMS) algorithm. In addition, it includes secondary path effects. To make the FxLMS algorithm more effective, the secondary path estimation should be more precise and accurate. The nonlinear function involved in the adaptation process is based on a spline function that can be modified during learning. The spline control points are adaptively changed using gradient-based techniques. B-splines and Catmull-Rom splines are used, because they allow imposing simple constraints on control parameters. This new kind of adaptive function is then applied to the output of a linear adaptive filter and it is used for the identification of Wiener-type nonlinear systems. In addition, we derive a simple form of the adaptation algorithm and an upper bound on the choice of the step-size. An extensive simulation study has been conducted to evaluate the noise mitigation performance of the proposed scheme and the new method has been shown to provide improved noise cancellation efficiency with a lesser computational load in comparison with other popular ANC systems.
Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems. All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: • contemporary power generation; • process control and • conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results.
Online learning from a signal processing perspective There is increased interest in kernel learning algorithms in neural networks and a growing need for nonlinear adaptive algorithms in advanced signal processing, communications, and controls. Kernel Adaptive Filtering is the first book to present a comprehensive, unifying introduction to online learning algorithms in reproducing kernel Hilbert spaces. Based on research being conducted in the Computational Neuro-Engineering Laboratory at the University of Florida and in the Cognitive Systems Laboratory at McMaster University, Ontario, Canada, this unique resource elevates the adaptive filtering theory to a new level, presenting a new design methodology of nonlinear adaptive filters. Covers the kernel least mean squares algorithm, kernel affine projection algorithms, the kernel recursive least squares algorithm, the theory of Gaussian process regression, and the extended kernel recursive least squares algorithm Presents a powerful model-selection method called maximum marginal likelihood Addresses the principal bottleneck of kernel adaptive filters—their growing structure Features twelve computer-oriented experiments to reinforce the concepts, with MATLAB codes downloadable from the authors' Web site Concludes each chapter with a summary of the state of the art and potential future directions for original research Kernel Adaptive Filtering is ideal for engineers, computer scientists, and graduate students interested in nonlinear adaptive systems for online applications (applications where the data stream arrives one sample at a time and incremental optimal solutions are desirable). It is also a useful guide for those who look for nonlinear adaptive filtering methodologies to solve practical problems.
This book includes selected peer-reviewed papers presented at the International Conference on Modeling, Simulation and Optimization (CoMSO 2021), organized by National Institute of Technology, Silchar, Assam, India, during December 16–18, 2021. The book covers topics of modeling, simulation and optimization, including computational modeling and simulation, system modeling and simulation, device/VLSI modeling and simulation, control theory and applications, modeling and simulation of energy systems and optimization. The book disseminates various models of diverse systems and includes solutions of emerging challenges of diverse scientific fields.
The principles of signal processing are using widely in telecommunications, control systems, sensors, smartphones, tablets, TV, video- and photo-cameras, computers, audio systems, etc. Written by 43 experienced and well-respected experts from universities, research centres and industry from 14 countries: Argentina, Australia, Brazil, China, Ecuador, France, Japan, Poland, Portugal, Spain, Switzerland, UK, Ukraine and USA the 'Advances is Signal Processing: Reviews', Vol. 1, Book Series, contains 13 chapters from the signals and systems theory to real-world applications. The authors discuss existing issues and ways to overcome these problems as well as the new challenges arising in the field. The book concludes with methods for the efficient implementation of algorithms in hardware and software. The advantages and disadvantages of different approaches are presented in the context of practical examples.
Single-channel hands-free teleconferencing systems are becoming popular. In order to enhance the communication quality of these systems, more and more stereophonic sound devices with two loudspeakers and two microphones are deployed. Because of the coupling between loudspeakers and microphones, there may be strong echoes, which make real-time communication very difficult. The best way we know to cancel these echoes is via a stereo acoustic echo canceller (SAEC), which can be modelled as a two-input/two-output system with real random variables. In this work, the authors recast this problem into a single-input/single-output system with complex random variables thanks to the widely linear model. From this new convenient formulation, they re-derive the most important aspects of a SAEC, including identification of the echo paths with adaptive filters, double-talk detection, and suppression.
Among the many techniques for designing linear multivariable analogue controllers, the two most popular optimal ones are H2 and H-infinity optimization. The fact that most new industrial controllers are digital provides strong motivation for adapting or extending these techniques to digital control systems. This book, now available as a corrected reprint, attempts to do so. Part I presents two indirect methods of sampled-data controller design: These approaches include approximations to a real problem, which involves an analogue plant, continuous-time performance specifications, and a sampled-data controller. Part II proposes a direct attack in the continuous-time domain, where sampled-data systems are time-varying. The findings are presented in forms that can readily be programmed in, e.g., MATLAB.