Download Free Efficient Estimation Of A Dynamic Error Shock Model Book in PDF and EPUB Free Download. You can read online Efficient Estimation Of A Dynamic Error Shock Model and write the review.

The aim of this volume is to provide a general overview of the econometrics of panel data, both from a theoretical and from an applied viewpoint. Since the pioneering papers by Kuh (1959), Mundlak (1961), Hoch (1962), and Balestra and Nerlove (1966), the pooling of cross section and time series data has become an increasingly popular way of quantifying economic relationships. Each series provides information lacking in the other, so a combination of both leads to more accurate and reliable results than would be achievable by one type of series alone. Over the last 30 years much work has been done: investigation of the properties of the applied estimators and test statistics, analysis of dynamic models and the effects of eventual measurement errors, etc. These are just some of the problems addressed by this work. In addition, some specific diffi culties associated with the use of panel data, such as attrition, heterogeneity, selectivity bias, pseudo panels etc., have also been explored. The first objective of this book, which takes up Parts I and II, is to give as complete and up-to-date a presentation of these theoretical developments as possible. Part I is concerned with classical linear models and their extensions; Part II deals with nonlinear models and related issues: logit and probit models, latent variable models, incomplete panels and selectivity bias, and point processes.
"First published in the New Palgrave: a dictionary of economics ... in four volumes, 1987"--T.p. verso. Includes bibliographical references.
Looking at a very simple example of an error-in-variables model, I was surprised at the effect that standard dynamic features (in the form of autocorre 11 lation. in the variables) could have on the state of identification of the model. It became apparent that identification of error-in-variables models was less of a problem when some dynamic features were present, and that the cathegory of "pre determined variables" was meaningless, since lagged endogenous and truly exogenous variables had very different identification properties. Also, for'the models I was considering, both necessary and sufficient conditions for identification could be expressed as simple counting rules, trivial to compute. These results seemed somewhat striking in the context of traditional econometrics literature, and p- vided the original motivation for this monograph. The monograph, therefore, atempts to analyze econometric identification of models when the variables are measured with error and when dynamic features are present. In trying to generalize the examples I was considering, although the final results had very simple expressions, the process of formally proving them became cumbersome and lengthy (in particular for the "sufficiency" part of the proofs). Possibly this was also due to a lack of more high-powered analytical tools and/or more elegant derivations, for which I feel an apology coul be appropiate. With some minor modifications, this monograph is a Ph. D. dissertation presented to the Department of Economics of the University of Wisconsin, Madison. Thanks are due to. Dennis J. Aigner and Arthur S.
This book presents an overview of the different errors-in-variables (EIV) methods that can be used for system identification. Readers will explore the properties of an EIV problem. Such problems play an important role when the purpose is the determination of the physical laws that describe the process, rather than the prediction or control of its future behaviour. EIV problems typically occur when the purpose of the modelling is to get physical insight into a process. Identifiability of the model parameters for EIV problems is a non-trivial issue, and sufficient conditions for identifiability are given. The author covers various modelling aspects which, taken together, can find a solution, including the characterization of noise properties, extension to multivariable systems, and continuous-time models. The book finds solutions that are constituted of methods that are compatible with a set of noisy data, which traditional approaches to solutions, such as (total) least squares, do not find. A number of identification methods for the EIV problem are presented. Each method is accompanied with a detailed analysis based on statistical theory, and the relationship between the different methods is explained. A multitude of methods are covered, including: instrumental variables methods; methods based on bias-compensation; covariance matching methods; and prediction error and maximum-likelihood methods. The book shows how many of the methods can be applied in either the time or the frequency domain and provides special methods adapted to the case of periodic excitation. It concludes with a chapter specifically devoted to practical aspects and user perspectives that will facilitate the transfer of the theoretical material to application in real systems. Errors-in-Variables Methods in System Identification gives readers the possibility of recovering true system dynamics from noisy measurements, while solving over-determined systems of equations, making it suitable for statisticians and mathematicians alike. The book also acts as a reference for researchers and computer engineers because of its detailed exploration of EIV problems.