Download Free Efficiency And Sustainability In Biofuel Production Book in PDF and EPUB Free Download. You can read online Efficiency And Sustainability In Biofuel Production and write the review.

Sustainable Biofuels: Opportunities and challenges, a volume in the "Applied Biotechnology Reviews series, explores the state-of-the-art in research and applied technology for the conversion of all types of biofuels. Its chapters span a broad spectrum of knowledge, from fundamentals and technical aspects to optimization, combinations, economics, and environmental aspects. They cover various facets of research, production, and commercialization of bioethanol, biodiesel, biomethane, biohydrogen, biobutanol, and biojet fuel. This book discusses biochemical, thermochemical, and hydrothermal conversion of unconventional feedstocks, including the role of biotechnology applications to achieve efficiency and competitiveness. Through case studies, techno-economic analysis and sustainability assessment, including life cycle assessment, it goes beyond technical aspects to provides actual resources for better decision-making during the development of commercially viable technology by researchers, PhD students, and practitioners in the field of bioenergy. It is also a useful resource for those in adjacent areas, such as biotechnology, industrial microbiology, chemical engineering, environmental engineering, and sustainability science, who are working on solutions for the bioeconomy. The ability to compare different technologies and their outcome that this book provides is also beneficial for energy analysts, consultants, planners, and policy-makers. The "Applied Biotechnology Reviews series highlights current development and research in biotechnology-related fields, combining in single-volume works the theoretical aspects and real-world applications for better decision-making. - Covers current technologies and advancements in biochemical, thermochemical, and hydrothermal conversion methods for production of various types of biofuels from conventional and nonconventional feedstock - Examines biotechnology processes, including genetic engineering of microorganisms and substrates, applied to biofuel production - Bridges the gap between technology development and prospects of commercialization of bioprocesses, including policy and economics of biofuel production, biofuel value chains, and how to accomplish cost-competitive results and sustainable development
This title includes a number of Open Access chapters.The world's interest in reducing petroleum use has led to the rapid development of the biofuel industry over the past decade or so. However, there is increasing concern over how current food-based biofuels affect both food security and the environment. Second-generation biofuels, however, use wid
This book covers almost all of the diverse aspects of utilizing lignocellulosic biomass for valuable biorefinery product development of chemicals, alternative fuels and energy. The world has shifted towards sustainable development for the generation of energy and industrially valuable chemicals. Biorefinery plays an important role in the integration of conversion process with high-end equipment facilities for the generation of energy, fuels and chemicals. The book is divided into four parts. The first part, "Basic Principles of Biorefinery," covers the concept of biorefinery, its application in industrial bioprocessing, the utilization of biomass for biorefinery application, and its future prospects and economic performance. The second part, "Biorefinery for Production of Chemicals," covers the production of bioactive compounds, gallic acid, C4, C5, and C6 compounds, etc., from a variety of substrates. The third part, "Biorefinery for Production of Alternative Fuel and Energy," covers sustainable production of bioethanol, biodiesel, and biogas from different types of substrates. The last part of this book discusses sequential utilization of wheat straw, material balance, and biorefinery approach. The approaches presented in this book will help readers/users from different areas like process engineering and biochemistry to plan integrated and inventive methods to trim down the expenditure of the industrial manufacture process to accomplish cost-effective feasible products in biorefinery.
Bioenergy Research: Advances and Applications brings biology and engineering together to address the challenges of future energy needs. The book consolidates the most recent research on current technologies, concepts, and commercial developments in various types of widely used biofuels and integrated biorefineries, across the disciplines of biochemistry, biotechnology, phytology, and microbiology. All the chapters in the book are derived from international scientific experts in their respective research areas. They provide you with clear and concise information on both standard and more recent bioenergy production methods, including hydrolysis and microbial fermentation. Chapters are also designed to facilitate early stage researchers, and enables you to easily grasp the concepts, methodologies and application of bioenergy technologies. Each chapter in the book describes the merits and drawbacks of each technology as well as its usefulness. The book provides information on recent approaches to graduates, post-graduates, researchers and practitioners studying and working in field of the bioenergy. It is an invaluable information resource on biomass-based biofuels for fundamental and applied research, catering to researchers in the areas of bio-hydrogen, bioethanol, bio-methane and biorefineries, and the use of microbial processes in the conversion of biomass into biofuels. - Reviews all existing and promising technologies for production of advanced biofuels in addition to bioenergy policies and research funding - Cutting-edge research concepts for biofuels production using biological and biochemical routes, including microbial fuel cells - Includes production methods and conversion processes for all types of biofuels, including bioethanol and biohydrogen, and outlines the pros and cons of each
Biofuels made from algae are gaining attention as a domestic source of renewable fuel. However, with current technologies, scaling up production of algal biofuels to meet even 5 percent of U.S. transportation fuel needs could create unsustainable demands for energy, water, and nutrient resources. Continued research and development could yield innovations to address these challenges, but determining if algal biofuel is a viable fuel alternative will involve comparing the environmental, economic and social impacts of algal biofuel production and use to those associated with petroleum-based fuels and other fuel sources. Sustainable Development of Algal Biofuels was produced at the request of the U.S. Department of Energy.
This open access book presents a comprehensive analysis of biofuel use strategies from an interdisciplinary perspective using sustainability science. This interdisciplinary perspective (social science-natural science) means that the strategies and policy options proposed will have significant impacts on the economy and society alike. Biofuels are expected to contribute to reducing greenhouse gas emissions, revitalizing economies in agricultural communities and alleviating poverty. However, despite these anticipated benefits, international organizations such as the FAO, OECD and UN have published reports expressing concerns that biofuel promotion may lead to deforestation, water pollution and water shortages. The impacts of biofuel use are extensive, cross-sectoral and complex, and as such, comprehensive analyses are required in order to assess the extent to which biofuels can contribute to sustainable societies. Applying interdisciplinary sustainability science concepts and methodologies, the book helps to enhance the establishment of a sustainable society as well as the development of appropriate responses to a global need for urgent action on current issues related to biofuels.
Biofuels for a More Sustainable Future: Life Cycle Sustainability Assessment and Multi-criteria Decision Making provides a comprehensive sustainability analysis of biofuels based on life cycle thinking and develops various multi-dimensional decision-making techniques for prioritizing biofuel production technologies. Taking a transversal approach, the book combines life cycle sustainability assessment, life cycle assessment, life cycle costing analysis, social life cycle assessment, sustainability metrics, triple bottom line, operations research methods, and supply chain design for investigating the critical factors and key enablers that influence the sustainable development of biofuel industry. This book will equip researchers and policymakers in the energy sector with the scientific methodology and metrics needed to develop strategies for viable sustainability transition. It will be a key resource for students, researchers and practitioners seeking to deepen their knowledge on energy planning and current and future trends of biofuel as an alternative fuel. - Provides an innovative approach to promoting sustainable development in biofuel production by linking supply chain design and decision support with the life cycle perspective - Features case studies and examples that illustrate the theory and methods developed - Includes material on corporate social responsibility and economic analysis of biofuels that is highly useful to policy-makers and administrators in both government and enterprise sectors
In the United States, we have come to depend on plentiful and inexpensive energy to support our economy and lifestyles. In recent years, many questions have been raised regarding the sustainability of our current pattern of high consumption of nonrenewable energy and its environmental consequences. Further, because the United States imports about 55 percent of the nation's consumption of crude oil, there are additional concerns about the security of supply. Hence, efforts are being made to find alternatives to our current pathway, including greater energy efficiency and use of energy sources that could lower greenhouse gas (GHG) emissions such as nuclear and renewable sources, including solar, wind, geothermal, and biofuels. The United States has a long history with biofuels and the nation is on a course charted to achieve a substantial increase in biofuels. Renewable Fuel Standard evaluates the economic and environmental consequences of increasing biofuels production as a result of Renewable Fuels Standard, as amended by EISA (RFS2). The report describes biofuels produced in 2010 and those projected to be produced and consumed by 2022, reviews model projections and other estimates of the relative impact on the prices of land, and discusses the potential environmental harm and benefits of biofuels production and the barriers to achieving the RFS2 consumption mandate. Policy makers, investors, leaders in the transportation sector, and others with concerns for the environment, economy, and energy security can rely on the recommendations provided in this report.
This book provides a detailed overview of aspects related to the overall provision chain for biokerosene as part of the global civil aviation business. Starting with a review of the current market situation for aviation fuels and airplanes and their demands, it then presents in-depth descriptions of classical and especially new types of non-edible biomass feedstock suitable for biokerosene provision. Subsequent chapters discuss those fuel provision processes that are already available and those still under development based on various biomass feedstock materials, and present e.g. an overview of the current state of the art in the production of a liquid biomass-based fuel fulfilling the specifications for kerosene. Further, given the growing interest of the aviation industry and airlines in biofuels for aviation, the experiences of an air-carrier are presented. In closing, the book provides a market outlook for biokerosene. Addressing a broad range of aspects related to the pros and cons of biokerosene as a renewable fuel for aviation, the book offers a unique resource.
Given the environmental concerns and declining availability of fossil fuels, as well as the growing population worldwide, it is essential to move toward a sustainable bioenergy-based economy. However, it is also imperative to address sustainability in the bioenergy industry in order to avoid depleting necessary biomass resources. Sustainable Bioenergy Production provides comprehensive knowledge and skills for the analysis and design of sustainable biomass production, bioenergy processing, and biorefinery systems for professionals in the bioenergy field. Focusing on topics vital to the sustainability of the bioenergy industry, this book is divided into four sections: Fundamentals of Engineering Analysis and Design of Bioenergy Production Systems, Sustainable Biomass Production and Supply Logistics, Sustainable Bioenergy Processing, and Sustainable Biorefinery Systems. Section I covers the fundamentals of genetic engineering, novel breeding, and cropping technologies applied in the development of energy crops. It discusses modern computational tools used in the design and analysis of bioenergy production systems and the life-cycle assessment for evaluating the environmental sustainability of biomass production and bioenergy processing technologies. Section II focuses on the technical and economic feasibility and environmental sustainability of various biomass feedstocks and emerging technologies to improve feedstock sustainability. Section III addresses the technical and economic feasibility and environmental sustainability of different bioenergy processing technologies and emerging technologies to improve the sustainability of each bioenergy process. Section IV discusses the design and analysis of biorefineries and different biorefinery systems, including lignocellulosic feedstock, whole-crop, and green biorefinery.