Download Free Effects On Flexural Performance Of Sawing Plain Concrete And Of Sawing And Other Methods Of Altering The Degree Of Fiber Alignment In Fiber Reinforced Concrete Book in PDF and EPUB Free Download. You can read online Effects On Flexural Performance Of Sawing Plain Concrete And Of Sawing And Other Methods Of Altering The Degree Of Fiber Alignment In Fiber Reinforced Concrete and write the review.

The use of fracture mechanics in resolving problems in the design of concrete structures is becoming more widely accepted and utilized as current codes cannot always be applied satisfactorily to design conditions. There is wide-ranging technical literature available on the subject but to date there is no readily accessible and systematic source to meet the needs of present practitioners and future designers. Fracture Mechanics and Structural Concrete addresses this need. The book provides a simple and straightforward study of fracture mechanics relating to concrete design and promotes its usage by highlighting the shortcomings of current design codes. It explains how fracture mechanics can overcome certain design problems, such as minimum reinforcement, punching shear failure and the influence of structural size upon shear capacity. Professional engineers, researchers and academics will find Fracture Mechanics and Structural Concrete an essential introduction to the subject. It will also be useful to postgraduate and final-year undergraduate students of civil engineering.
"In the research project presented in this PhD-thesis, an innovative type of fibre concrete is developed, with improved both the tensile strength and the ductility: the Hybrid-Fibre Concrete (HFC). The expression "Hybrid" refers to the "hybridisation" of fibres: short and long steel fibres were combined together in one concrete mixture. This is opposite to conventional steel fibre concretes, which contain only one type of fibre. The basic goal of combining short and long fibres is from one side to improve the tensile strength by the action of short fibres, and from the other side to improve the ductility by the action of long fibres." "In this research project, all important aspects needed for the development and application of Hybrid-Fibre Concrete have been considered. In total 15 mixtures, with different types and amounts of steel fibres were developed and tested in the fresh state (workability) as well as in the hardened state (uniaxial tensile tests, flexural tests, pullout tests of single fibres and compressive tests). A new analytical model for bridging of cracks by fibres was developed and successfully implemented for tensile softening response of HFC. At the end, the utilisation of HFC in the engineering practice was discussed, including a case-study on light prestressed long-span beams made of HFC."--BOOK JACKET.