Download Free Effects Of Suspended Sediment On Aquatic Environment Book in PDF and EPUB Free Download. You can read online Effects Of Suspended Sediment On Aquatic Environment and write the review.

This open access book surveys the frontier of scientific river research and provides examples to guide management towards a sustainable future of riverine ecosystems. Principal structures and functions of the biogeosphere of rivers are explained; key threats are identified, and effective solutions for restoration and mitigation are provided. Rivers are among the most threatened ecosystems of the world. They increasingly suffer from pollution, water abstraction, river channelisation and damming. Fundamental knowledge of ecosystem structure and function is necessary to understand how human acitivities interfere with natural processes and which interventions are feasible to rectify this. Modern water legislation strives for sustainable water resource management and protection of important habitats and species. However, decision makers would benefit from more profound understanding of ecosystem degradation processes and of innovative methodologies and tools for efficient mitigation and restoration. The book provides best-practice examples of sustainable river management from on-site studies, European-wide analyses and case studies from other parts of the world. This book will be of interest to researchers in the field of aquatic ecology, river system functioning, conservation and restoration, to postgraduate students, to institutions involved in water management, and to water related industries.
The breakup of a river ice cover can be both fascinating and perilous, owing to ever-changing ice conditions and dynamic processes that sometimes lead to extreme flood events caused by ice jams. Though much progress has been made recently in the study of ice jams, less has been achieved on the more general, and more complex, problem of how to predict the entire breakup process, from the first ice movement to the last ice effect on river stage. This type of knowledge is essential to determining when and where ice jam threats may develop and when they may release and generate steep flood waves that can trigger ice runs and jamming further downstream. In turn, such understanding is invaluable to natural hazard reduction, ecosystem conservation and protection, and adaptation to climatic impacts. This book combines the existing information, previously scattered in various journals, conference proceedings, and technical reports. It contains contributions by several authors to achieve a comprehensive and balanced coverage, including qualitative and quantitative descriptions of relevant physical processes, forecasting methods and flood-frequency assessments, as well as ecological impacts and climatic considerations. The book should be of interest to readers of different backgrounds, both beginners and specialists. -- Publisher's website.
This book is open access under a CC BY 4.0 license. This volume focuses on microscopic plastic debris, also referred to as microplastics, which have been detected in aquatic environments around the globe and have accordingly raised serious concerns. The book explores whether microplastics represent emerging contaminants in freshwater systems, an area that remains underrepresented to date. Given the complexity of the issue, the book covers the current state-of-research on microplastics in rivers and lakes, including analytical aspects, environmental concentrations and sources, modelling approaches, interactions with biota, and ecological implications. To provide a broader perspective, the book also discusses lessons learned from nanomaterials and the implications of plastic debris for regulation, politics, economy, and society. In a research field that is rapidly evolving, it offers a solid overview for environmental chemists, engineers, and toxicologists, as well as water managers and policy-makers.
Most organisms and populations have to cope with hostile environments, threatening their existence. Their ability to respond phenotypically and genetically to these challenges and to evolve adaptive mechanisms is, therefore, crucial. The contributions to this book aim at understanding, from a evolutionary perspective, the impact of stress on biological systems. Scientists, applying different approaches spanning from the molecular and the protein level to individuals, populations and ecosystems, explore how organisms adapt to extreme environments, how stress changes genetic structure and affects life histories, how organisms cope with thermal stress through acclimation, and how environmental and genetic stress induce fluctuating asymmetry, shape selection pressure and cause extinction of populations. Finally, it discusses the role of stress in evolutionary change, from stress induced mutations and selection to speciation and evolution at the geological time scale. The book contains reviews and novel scientific results on the subject. It will be of interest to both researchers and graduate students and may serve as a text for graduate courses.
This volume provides a comprehensive overview of environmental aspects of the Sava River, which is the greatest tributary to the Danube River and the major drainage river system of South Eastern Europe. Hydroelectric power plants, river traffic, intensive agricultural activities, heavy industry and floods have considerable influence on the environment and biota in the basin. Summarizing the results that were gathered in the course of EU, bilateral and national projects, the book highlights the most important stressors and helps readers to better understand the impact of anthropogenic activities on the function of river basins. Topics include: transboundary water cooperation between the riparian countries; climate change projection, including its impact on flood hazards; evaluation of anthropogenic pollution sources; pollution of sediments, metal bioavailability and ecotoxicological and microbiological characterization of the river. The biological part also addresses quality aspects related to wildlife in river aquatic ecosystems (algae, macrophytes, zooplankton, macroinvertebrates and fish) and riparian ecosystems (amphibians, reptiles, birds and mammals). The general state of biodiversity and pressures caused by invasive aquatic species are also discussed.