Download Free Effects Of Residual Stress On Fatigue Crack Propagation Book in PDF and EPUB Free Download. You can read online Effects Of Residual Stress On Fatigue Crack Propagation and write the review.

Analysis of Welded Structures: Residual Stresses, Distortion, and their Consequences encompasses several topics related to design and fabrication of welded structures, particularly residual stresses and distortion, as well as their consequences. This book first introduces the subject by presenting the advantages and disadvantages of welded structures, as well as the historical overview of the topic and predicted trends. Then, this text considers residual stresses, heat flow, distortion, fracture toughness, and brittle and fatigue fractures of weldments. This selection concludes by discussing the effects of distortion and residual stresses on buckling strength of welded structures and effects of weld defects on service behavior. This book also provides supplementary discussions on some related and selected subjects. This text will be invaluable to metallurgists, welders, and students of metallurgy and welding.
This paper presents a series of test results carried out on elliptical Concrete-Filled Tube (CFT) columns. The tests were conducted to investigate the effects of variations of concrete strength and column slenderness on the behaviour and axial strength of the columns. The experimental study was carried out on ten specimens of short and long columns with Self-Consolidating Concrete (SCC). One elliptical steel section was used with three different typical concrete strengths to determine the reduction of column strength with the increase in column length. All specimens were tested to failure to assess their load carrying capacity, deformation and structural behaviour.
"Eleven peer-reviewed papers, written by experts in their field, provide an understanding of residual stresses, fatigue crack growth, fatigue lifetime predictions, and their effect on structural integrity. Residual stresses can be present due to processing and manufacturing of materials and structures, so it is imperative to understand how and why they can influence the test data that we used in structural design methodologies. Residual stresses may also be intentionally engineered into structures in attempts to improve fatigue life, and it is equally important that designers understand how to account for these potential effects on fatigue life."--Publisher's website.
This book gathers the latest advances, innovations, and applications in the field of environmental and construction engineering, as presented by international researchers at the XXIV International Scientific Conference "Construction: The Formation of Living Environment", held in Moscow, Russia on April 22-24, 2021. It covers highly diverse topics, including sustainable innovative development of the construction industry, building materials, reliability of buildings and constructions and safety in construction, modelling and mechanics of building structures, engineering and smart systems in construction, climate change and urban environment. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations.
The Springer Handbook of Experimental Solid Mechanics documents both the traditional techniques as well as the new methods for experimental studies of materials, components, and structures. The emergence of new materials and new disciplines, together with the escalating use of on- and off-line computers for rapid data processing and the combined use of experimental and numerical techniques have greatly expanded the capabilities of experimental mechanics. New exciting topics are included on biological materials, MEMS and NEMS, nanoindentation, digital photomechanics, photoacoustic characterization, and atomic force microscopy in experimental solid mechanics. Presenting complete instructions to various areas of experimental solid mechanics, guidance to detailed expositions in important references, and a description of state-of-the-art applications in important technical areas, this thoroughly revised and updated edition is an excellent reference to a widespread academic, industrial, and professional engineering audience.
Many people find the concept of fracture and damage mechanics to be somewhat problematic, mainly because, until recently, close attention in mechanics was focused especially on the strength and resistance of materials. In this sense, to speak of fracture is as uncomfortable for some as it is to speak of a deadly disease. In confronting and preventing a fatal disease, one must understand its complexity, symptoms, and behavior; by the same token, in securing the strength of an engineering structure, one must understand the reasons and type of its potential failure. This book will provide knowledge and insights on this matter to its readers.
Fatigue of structures and materials covers a wide scope of different topics. The purpose of the present book is to explain these topics, to indicate how they can be analyzed, and how this can contribute to the designing of fatigue resistant structures and to prevent structural fatigue problems in service. Chapter 1 gives a general survey of the topic with brief comments on the signi?cance of the aspects involved. This serves as a kind of a program for the following chapters. The central issues in this book are predictions of fatigue properties and designing against fatigue. These objectives cannot be realized without a physical and mechanical understanding of all relevant conditions. In Chapter 2 the book starts with basic concepts of what happens in the material of a structure under cyclic loads. It illustrates the large number of variables which can affect fatigue properties and it provides the essential background knowledge for subsequent chapters. Different subjects are presented in the following main parts: • Basic chapters on fatigue properties and predictions (Chapters 2–8) • Load spectra and fatigue under variable-amplitude loading (Chapters 9–11) • Fatigue tests and scatter (Chapters 12 and 13) • Special fatigue conditions (Chapters 14–17) • Fatigue of joints and structures (Chapters 18–20) • Fiber-metal laminates (Chapter 21) Each chapter presents a discussion of a speci?c subject.
An introductory and intermediate level handbook written in pragmatic style to explain residual stresses and to provide straightforward guidance about practical measurement methods. Residual stresses play major roles in engineering structures, with highly beneficial effects when designed well, and catastrophic effects when ignored. With ever-increasing concern for product performance and reliability, there is an urgent need for a renewed assessment of traditional and modern measurement techniques. Success critically depends on being able to make the most practical and effective choice of measurement method for a given application. Practical Residual Stress Measurement Methods provides the reader with the information needed to understand key residual stress concepts and to make informed technical decisions about optimal choice of measurement technique. Each chapter, written by invited specialists, follows a focused and pragmatic format, with subsections describing the measurement principle, residual stress evaluation, practical measurement procedures, example applications, references and further reading. The chapter authors represent both international academia and industry. Each of them brings to their writing substantial hands-on experience and expertise in their chosen field. Fully illustrated throughout, the book provides a much-needed practical approach to residual stress measurements. The material presented is essential reading for industrial practitioners, academic researchers and interested students. Key features: • Presents an overview of the principal residual stress measurement methods, both destructive and non-destructive, with coverage of new techniques and modern enhancements of established techniques • Includes stand-alone chapters, each with its own figures, tables and list of references, and written by an invited team of international specialists
Laser shock peening (LSP) is a process for inducing compressive residual stresses using shock waves generated by laser pulses. It is a relatively new surface treatment for metallic materials that can greatly improve their resistance to crack initiation and propagation brought on by cyclic loading and fatigue. This book, the first of its kind, consolidates the scattered knowledge about LSP into one comprehensive volume. It describes the mechanisms of LSP and its substantial role in improving fatigue performance in terms of modification of microstructure, surface morphology, hardness, and strength. In particular, it describes numerical simulation techniques and procedures that can be adopted by engineers and research scientists to design, evaluate, and optimize LSP processes in practical applications.