Download Free Effects Of Radiation Damage On Scientific Charge Coupled Devices Book in PDF and EPUB Free Download. You can read online Effects Of Radiation Damage On Scientific Charge Coupled Devices and write the review.

"The book provides invaluable information to scientists, engineers, and product managers involved with imaging CCDs, as well as those who need a comprehensive introduction to the subject."--Page 4 de la couverture
This book provides a detailed treatment of radiation effects in electronic devices, including effects at the material, device, and circuit levels. The emphasis is on transient effects caused by single ionizing particles (single-event effects and soft errors) and effects produced by the cumulative energy deposited by the radiation (total ionizing dose effects). Bipolar (Si and SiGe), metalOCooxideOCosemiconductor (MOS), and compound semiconductor technologies are discussed. In addition to considering the specific issues associated with high-performance devices and technologies, the book includes the background material necessary for understanding radiation effects at a more general level. Contents: Single Event Effects in Avionics and on the Ground (E Normand); Soft Errors in Commercial Integrated Circuits (R C Baumann); System Level Single Event Upset Mitigation Strategies (W F Heidergott); Space Radiation Effects in Optocouplers (R A Reed et al.); The Effects of Space Radiation Exposure on Power MOSFETs: A Review (K Shenai et al.); Total Dose Effects in Linear Bipolar Integrated Circuits (H J Barnaby); Hardness Assurance for Commercial Microelectronics (R L Pease); Switching Oxide Traps (T R Oldham); Online and Realtime Dosimetry Using Optically Stimulated Luminescence (L Dusseau & J Gasiot); and other articles. Readership: Practitioners, researchers, managers and graduate students in electrical and electronic engineering, semiconductor science and technology, and microelectronics."
Device and Circuit Cryogenic Operation for Low Temperature Electronics is a first in reviewing the performance and physical mechanisms of advanced devices and circuits at cryogenic temperatures that can be used for many applications. The first two chapters cover bulk silicon and SOI MOSFETs. The electronic transport in the inversion layer, the influence of impurity freeze-out, the special electrical properties of SOI structures, the device reliability and the interest of a low temperature operation for the ultimate integration of silicon down to nanometer dimensions are described. The next two chapters deal with Silicon-Germanium and III-V Heterojunction Bipolar Transistors, as well as III-V High Electron Mobility Transistors (HEMT). The basic physics of the SiGe HBT and its unique cryogenic capabilities, the optimization of such bipolar devices, and the performance of SiGe HBT BiCMOS technology at liquid nitrogen temperature are examined. The physical effects in III-V semiconductors at low temperature, the HEMT and HBT static, high frequency and noise properties, and the comparison of various cooled III-V devices are also addressed. The next chapter treats quantum effect devices made of silicon materials. The major quantum effects at low temperature, quantum wires, quantum dots as well as single electron devices and applications are investigated. The last chapter overviews the performances of cryogenic circuits and their applications. The low temperature properties and performance of inverters, multipliers, adders, operational amplifiers, memories, microprocessors, imaging devices, circuits and systems, sensors and read-out circuits are analyzed. Device and Circuit Cryogenic Operation for Low Temperature Electronics is useful for researchers, engineers, Ph.D. and M.S. students working in the field of advanced electron devices and circuits, new semiconductor materials, and low temperature electronics and physics.
Advances in Imaging & Electron Physics merges two long-running serials--Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
Ionizing Radiation Effects in Electronics: From Memories to Imagers delivers comprehensive coverage of the effects of ionizing radiation on state-of-the-art semiconductor devices. The book also offers valuable insight into modern radiation-hardening techniques. The text begins by providing important background information on radiation effects, their underlying mechanisms, and the use of Monte Carlo techniques to simulate radiation transport and the effects of radiation on electronics. The book then: Explains the effects of radiation on digital commercial devices, including microprocessors and volatile and nonvolatile memories—static random-access memories (SRAMs), dynamic random-access memories (DRAMs), and Flash memories Examines issues like soft errors, total dose, and displacement damage, together with hardening-by-design solutions for digital circuits, field-programmable gate arrays (FPGAs), and mixed-analog circuits Explores the effects of radiation on fiber optics and imager devices such as complementary metal-oxide-semiconductor (CMOS) sensors and charge-coupled devices (CCDs) Featuring real-world examples, case studies, extensive references, and contributions from leading experts in industry and academia, Ionizing Radiation Effects in Electronics: From Memories to Imagers is suitable both for newcomers who want to become familiar with radiation effects and for radiation experts who are looking for more advanced material or to make effective use of beam time.
Develop the skills and knowledge to make informed decisions regarding technical factors and diagnostic imaging quality with the vibrantly illustrated Radiologic Science for Technologists, 10th Edition. Updated with the latest advances in the field, this full-color and highly detailed edition addresses a broad range of radiologic disciplines and provides a strong foundation in the study and practice of radiologic physics, imaging, radiobiology, radiation protection, and more. Unique learning tools strengthen your understanding of key concepts and prepare you for success on the ARRT certification exam and in clinical practice. Broad coverage of radiologic science topics — including radiologic physics, imaging, radiobiology, radiation protection, and more — allows you to use the text over several semesters. Highlighted math formulas call attention to mathematical information for special focus. Important Concept boxes recap the most important chapter information. Colored page tabs for formulas, conversion tables, abbreviations, and other data provide easy access to frequently used information. End-of-chapter questions include definition exercises, short answer, and calculations to help you review material. Key terms and expanded glossary enable you to easily reference and study content. Chapter introductions, summaries, objectives, and outlines help you organize and pinpoint the most important information. NEW! Chapters on digital radiographic technique and digital image display prepare you to use today’s technology. NEW! Streamlined physics and math sections ensure you are prepared to take the ARRT exam and succeed in the clinical setting.