Download Free Effect Of Composition Microstructure And Component Thickness On The Oxidation Behaviour Of Laves Phase Strengthened Interconnect Steel For Solid Oxide Fuel Cells Sofc Book in PDF and EPUB Free Download. You can read online Effect Of Composition Microstructure And Component Thickness On The Oxidation Behaviour Of Laves Phase Strengthened Interconnect Steel For Solid Oxide Fuel Cells Sofc and write the review.

High-temperature Solid Oxide Fuel Cells, Second Edition, explores the growing interest in fuel cells as a sustainable source of energy. The text brings the topic of green energy front and center, illustrating the need for new books that provide comprehensive and practical information on specific types of fuel cells and their applications. This landmark volume on solid oxide fuel cells contains contributions from experts of international repute, and provides a single source of the latest knowledge on this topic. - A single source for all the latest information on solid oxide fuel cells and their applications - Illustrates the need for new, more comprehensive books and study on the topic - Explores the growing interest in fuel cells as viable, sustainable sources of energy
George Lai's 1990 book, High-Temperature Corrosion of Engineering Alloys, is recognized as authoritative and is frequently consulted and often cited by those in the industry. His new book, almost double in size with seven more chapters, addresses the new concerns, new technologies, and new materials available for those engaged in high-temperature applications. As we strive for energy efficiency, the realm of high-temperature environments is expanding and the need for information on high temperature materials applications was never greater. In addition to extensive expansion on most of the content of the original book, new topics include erosion and erosion-corrosion, low NOx combustion in coal-fired boilers, fluidized bed combustion, and the special demands of waste-to-energy boilers, waste incinerators, and black liquor recovery boilers in the pulp and paper industry. The corrosion induced by liquid metals is discussed and protection options are presented.
Solid Oxide Fuel Cells: From Fundamental Principles to Complete Systems is a valuable resource for beginners, experienced researchers, and developers of solid oxide fuel cells (SOFCs). It provides a fundamental understanding of SOFCs by covering the present state-of-the-art as well as ongoing research and future challenges to be solved. It discusses current and future materials, and provides an overview of development activities with a more general system approach toward fuel cell plant technology, including plant design and economics, industrial data, and advances in technology. Provides an understanding of the operating principles of SOFCs Discusses state-of-the-art materials, technologies, and processes Includes a review of the current industry and lessons learned Offers a more general system approach toward fuel cell plant technology, including plant design and economics of SOFC manufacture Covers significant technical challenges that remain to be solved Presents the status of government activities, industry, and market This book is aimed at electrochemists, batteries and fuel cell engineers, alternative energy scientists, and professionals in materials science.
Stainless steels represent a quite interesting material family, both from a scientific and commercial point of view, following to their excellent combination in terms of strength and ductility together with corrosion resistance. Thanks to such properties, stainless steels have been indispensable for the technological progress during the last century and their annual consumption increased faster than other materials. They find application in all these fields requiring good corrosion resistance together with ability to be worked into complex geometries. Despite to their diffusion as a consolidated materials, many research fields are active regarding the possibility to increase stainless steels mechanical properties and corrosion resistance by grain refinement or by alloying by interstitial elements. At the same time innovations are coming from the manufacturing process of such a family of materials, also including the possibility to manufacture them starting from metals powder for 3D printing. The Special Issue scope embraces interdisciplinary work covering physical metallurgy and processes, reporting about experimental and theoretical progress concerning microstructural evolution during processing, microstructure-properties relations, applications including automotive, energy and structural.
A straightforward treatment describing the oxidation processes of metals and alloys at elevated temperatures. This 2006 second edition retains the fundamental theory but incorporates advances made in understanding degradation phenomena. The first half provides an authoritative introduction to the basic principles, covering thermodynamics and mechanisms of high temperature corrosion of metals and alloys. The latter half extends the discussion to oxidation processes in complex systems, from reactions in mixed environments to protective techniques, including coatings and atmosphere control. The authors provide a logical and expert treatment of the subject, producing a revised edition that will be a comprehensive guide to material scientists and engineers requiring an understanding of this elementary process.
In this book well-known experts highlight cutting-edge research priorities and discuss the state of the art in the field of solid oxide fuel cells giving an update on specific subjects such as protonic conductors, interconnects, electrocatalytic and catalytic processes and modelling approaches.Fundamentals and advances in this field are illustrated to help young researchers address issues in the characterization of materials and in the analysis of processes, not often tackled in scholarly books.
The 3rd edition of this successful textbook continues to build on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field — in a concise format. The 3rd edition offers significant updates throughout, with expanded sections on sustainability, energy storage, metal-organic frameworks, solid electrolytes, solvothermal/microwave syntheses, integrated circuits, and nanotoxicity. Most appropriate for Junior/Senior undergraduate students, as well as first-year graduate students in chemistry, physics, or engineering fields, Materials Chemistry may also serve as a valuable reference to industrial researchers. Each chapter concludes with a section that describes important materials applications, and an updated list of thought-provoking questions.
High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications provides a comprehensive discussion of solid oxide fuel cells (SOFCs). SOFCs are the most efficient devices for the electrochemical conversion of chemical energy of hydrocarbon fuels into electricity, and have been gaining increasing attention for clean and efficient distributed power generation. The book explains the operating principle, cell component materials, cell and stack designs and fabrication processes, cell and stack performance, and applications of SOFCs. Individual chapters are written by internationally renowned authors in their respective fields, and the text is supplemented by a large number of references for further information. The book is primarily intended for use by researchers, engineers, and other technical people working in the field of SOFCs. Even though the technology is advancing at a very rapid pace, the information contained in most of the chapters is fundamental enough for the book to be useful even as a text for SOFC technology at the graduate level.
This is the second volume of an advanced textbook on microstructure and properties of materials. (The first volume is on aluminum alloys, nickel-based superalloys, metal matrix composites, polymer matrix composites, ceramics matrix composites, inorganic glasses, superconducting materials and magnetic materials). It covers titanium alloys, titanium aluminides, iron aluminides, iron and steels, iron-based bulk amorphous alloys and nanocrystalline materials.There are many elementary materials science textbooks, but one can find very few advanced texts suitable for graduate school courses. The contributors to this volume are experts in the subject, and hence, together with the first volume, it is a good text for graduate microstructure courses. It is a rich source of design ideas and applications, and will provide a good understanding of how microstructure affects the properties of materials.Chapter 1, on titanium alloys, covers production, thermomechanical processing, microstructure, mechanical properties and applications. Chapter 2, on titanium aluminides, discusses phase stability, bulk and defect properties, deformation mechanisms of single phase materials and polysynthetically twinned crystals, and interfacial structures and energies between phases of different compositions. Chapter 3, on iron aluminides, reviews the physical and mechanical metallurgy of Fe3Al and FeAl, the two important structural intermetallics. Chapter 4, on iron and steels, presents methodology, microstructure at various levels, strength, ductility and strengthening, toughness and toughening, environmental cracking and design against fracture for many different kinds of steels. Chapter 5, on bulk amorphous alloys, covers the critical cooling rate and the effect of composition on glass formation and the accompanying mechanical and magnetic properties of the glasses. Chapter 6, on nanocrystalline materials, describes the preparation from vapor, liquid and solid states, microstructure including grain boundaries and their junctions, stability with respect to grain growth, particulate consolidation while maintaining the nanoscale microstructure, physical, chemical, mechanical, electric, magnetic and optical properties and applications in cutting tools, superplasticity, coatings, transformers, magnetic recordings, catalysis and hydrogen storage.