Download Free Education And Public Understanding Book in PDF and EPUB Free Download. You can read online Education And Public Understanding and write the review.

Understanding the Power and Politics of Public Education researches the history and trends of educating the populace in the United States. Demographic changes and socio-economic diversity have altered the needs for traditional approaches. Policy makers are implored to become familiar with proven educational research to implement policies that service the needs of all youth. Public schools now enroll more minority students than ever before. Diverse languages, cultures and experiences call for pedagogy to meet the needs and educational success for new citizens. Teacher training programs in colleges and universities – along with new curricula - are in need of revision to promote educational success of new generations. Understanding the role of experiential background and its influence on educational success, and social mobility is necessary for a healthy society and democracy. This book examines statistical studies showing the impact of environmental issues on cognitive development and illustrates the educational outcome and effects of poverty through documented research in areas of health care, nutrition, pollution, community and family experiences. It also explores the role of family socio-economic status and compares the educational readiness of the more and less affluent.
Engineering education in K-12 classrooms is a small but growing phenomenon that may have implications for engineering and also for the other STEM subjects-science, technology, and mathematics. Specifically, engineering education may improve student learning and achievement in science and mathematics, increase awareness of engineering and the work of engineers, boost youth interest in pursuing engineering as a career, and increase the technological literacy of all students. The teaching of STEM subjects in U.S. schools must be improved in order to retain U.S. competitiveness in the global economy and to develop a workforce with the knowledge and skills to address technical and technological issues. Engineering in K-12 Education reviews the scope and impact of engineering education today and makes several recommendations to address curriculum, policy, and funding issues. The book also analyzes a number of K-12 engineering curricula in depth and discusses what is known from the cognitive sciences about how children learn engineering-related concepts and skills. Engineering in K-12 Education will serve as a reference for science, technology, engineering, and math educators, policy makers, employers, and others concerned about the development of the country's technical workforce. The book will also prove useful to educational researchers, cognitive scientists, advocates for greater public understanding of engineering, and those working to boost technological and scientific literacy.
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Softbound - New, softbound print book.
Bioterrorism, drug-resistant disease, transmission of disease by global travel . . . there's no shortage of challenges facing America's public health officials. Men and women preparing to enter the field require state-of-the-art training to meet these increasing threats to the public health. But are the programs they rely on provide the high caliber professional training they require? Who Will Keep the Public Healthy? provides an overview of the past, present, and future of public health education, assessing its readiness to provide the training and education needed to prepare men and women to face 21st century challenges. Advocating an ecological approach to public health, the Institute of Medicine examines the role of public health schools and degree-granting programs, medical schools, nursing schools, and government agencies, as well as other institutions that foster public health education and leadership. Specific recommendations address the content of public health education, qualifications for faculty, availability of supervised practice, opportunities for cross-disciplinary research and education, cooperation with government agencies, and government funding for education. Eight areas of critical importance to public health education in the 21st century are examined in depth: informatics, genomics, communication, cultural competence, community-based participatory research, global health, policy and law, and public health ethics. The book also includes a discussion of the policy implications of its ecological framework.
A path-breaking journey into the brain, showing how perception, thought, and action are products of "maps" etched into your gray matter--and how technology can use them to read your mind.
This book fleshes out activities and initiatives in the field of education from across areas of European Union competence in order to highlight the extent to which education and training have penetrated the European Community’s policymaking since its creation. Policies are all too often placed in their individual silos, which can sometimes work against deeper understanding of policymaking and its reach across policy domains. This project avoids such compartmentalisation and instead crosses boundaries to explore education’s relationship with other policy areas, as well as its far-reaching role in the construction of a united Europe. It demonstrates education’s significance across the broad landscape of European integration by presenting a collection of case studies, which represent policy areas that have experienced the infiltration of education. These include: Migration, Health, Agriculture, Multilingualism, Media and Communications, and the environment.
Global climate change is one of America's most significant long-term policy challenges. Human activity-especially the use of fossil fuels, industrial processes, livestock production, waste disposal, and land use change-is affecting global average temperatures, snow and ice cover, sea-level, ocean acidity, growing seasons and precipitation patterns, ecosystems, and human health. Climate-related decisions are being carried out by almost every agency of the federal government, as well as many state and local government leaders and agencies, businesses and individual citizens. Decision makers must contend with the availability and quality of information, the efficacy of proposed solutions, the unanticipated consequences resulting from decisions, the challenge of implementing chosen actions, and must consider how to sustain the action over time and respond to new information. Informing an Effective Response to Climate Change, a volume in the America's Climate Choices series, describes and assesses different activities, products, strategies, and tools for informing decision makers about climate change and helping them plan and execute effective, integrated responses. It discusses who is making decisions (on the local, state, and national levels), who should be providing information to make decisions, and how that information should be provided. It covers all levels of decision making, including international, state, and individual decision making. While most existing research has focused on the physical aspect of climate change, Informing an Effective Response to Climate Change employs theory and case study to describe the efforts undertaken so far, and to guide the development of future decision-making resources. Informing an Effective Response to Climate Change offers much-needed guidance to those creating public policy and assists in implementing that policy. The information presented in this book will be invaluable to the research community, especially social scientists studying climate change; practitioners of decision-making assistance, including advocacy organizations, non-profits, and government agencies; and college-level teachers and students.
The National Science Foundation funded a synthesis study on the status, contributions, and future direction of discipline-based education research (DBER) in physics, biological sciences, geosciences, and chemistry. DBER combines knowledge of teaching and learning with deep knowledge of discipline-specific science content. It describes the discipline-specific difficulties learners face and the specialized intellectual and instructional resources that can facilitate student understanding. Discipline-Based Education Research is based on a 30-month study built on two workshops held in 2008 to explore evidence on promising practices in undergraduate science, technology, engineering, and mathematics (STEM) education. This book asks questions that are essential to advancing DBER and broadening its impact on undergraduate science teaching and learning. The book provides empirical research on undergraduate teaching and learning in the sciences, explores the extent to which this research currently influences undergraduate instruction, and identifies the intellectual and material resources required to further develop DBER. Discipline-Based Education Research provides guidance for future DBER research. In addition, the findings and recommendations of this report may invite, if not assist, post-secondary institutions to increase interest and research activity in DBER and improve its quality and usefulness across all natural science disciples, as well as guide instruction and assessment across natural science courses to improve student learning. The book brings greater focus to issues of student attrition in the natural sciences that are related to the quality of instruction. Discipline-Based Education Research will be of interest to educators, policy makers, researchers, scholars, decision makers in universities, government agencies, curriculum developers, research sponsors, and education advocacy groups.