Download Free Editors Reference Book On Cement Concrete Book in PDF and EPUB Free Download. You can read online Editors Reference Book On Cement Concrete and write the review.

Your one-source guide to Concrete-Based Homebuilding Systems. Residential contractors, architects, and developers will welcome this first total guide to the latest concrete-based homebuilding systems (CBHSs). With lumber costs still on the rise after doubling the early '90s, The Portland Cement Association Guide to Concrete Homes, by Peter VanderWerf and W. Keith Munsel, can deliver, durable, cost-efficient, esthetically pleasing alternative building materials and construction methods. It's all spelled out in an authoritative sourcebook that explains and compares the various types of CBHSs and lists special materials and tools for building them--provides case histories of concrete homes already built and in use--and contains data vital to building professionals who want to learn tomorrow's techniques today.
Lea's Chemistry of Cement and Concrete deals with the chemical and physical properties of cements and concretes and their relation to the practical problems that arise in manufacture and use. As such it is addressed not only to the chemist and those concerned with the science and technology of silicate materials, but also to those interested in the use of concrete in building and civil engineering construction. Much attention is given to the suitability of materials, to the conditions under which concrete can excel and those where it may deteriorate and to the precautionary or remedial measures that can be adopted. First published in 1935, this is the fourth edition and the first to appear since the death of Sir Frederick Lea, the original author. Over the life of the first three editions, this book has become the authority on its subject. The fourth edition is edited by Professor Peter C. Hewlett, Director of the British Board of Agrement and visiting Industrial Professor in the Department of Civil Engineering at the University of Dundee. Professor Hewlett has brought together a distinguished body of international contributors to produce an edition which is a worthy successor to the previous editions.
Eco-efficient concrete is a comprehensive guide to the characteristics and environmental performance of key concrete types.Part one discusses the eco-efficiency and life cycle assessment of Portland cement concrete, before part two goes on to consider concrete with supplementary cementitious materials (SCMs). Concrete with non-reactive wastes is the focus of part three, including municipal solid waste incinerator (MSWI) concrete, and concrete with polymeric, construction and demolition wastes (CDW). An eco-efficient approach to concrete carbonation is also reviewed, followed by an investigation in part four of future alternative binders and the use of nano and biotech in concrete production.With its distinguished editors and international team of expert contributors, Eco-efficient concrete is a technical guide for all professionals, researchers and academics currently or potentially involved in the design, manufacture and use of eco-efficient concrete. - The first part of the book examines the eco-efficiency and life cycle assessment of Portland cement concrete - Chapters in the second part of the book consider concrete with supplementary cementitious materials, including properties and performance - Reviews the eco-efficient approach to concrete carbonation
This book gathers peer-reviewed contributions presented at the 2nd RILEM International Conference on Concrete and Digital Fabrication (Digital Concrete), held online and hosted by the Eindhoven University of Technology, the Netherlands from 6-9 July 2020. Focusing on additive and automated manufacturing technologies for the fabrication of cementitious construction materials, such as 3D concrete printing, powder bed printing, and shotcrete 3D printing, the papers highlight the latest findings in this fast-growing field, addressing topics like mixture design, admixtures, rheology and fresh-state behavior, alternative materials, microstructure, cold joints & interfaces, mechanical performance, reinforcement, structural engineering, durability and sustainability, automation and industrialization.
Whilst most structures made using concrete and cement-based composites have not shown signs of premature degradation, there have been notable exceptions. In addition, there is increasing pressure for new structures to remain in serviceable condition for long periods with only minimal maintenance before being recycled. All these factors have highlighted the issues of what affects the durability of these materials in different circumstances and how material properties can be measured and improved. Durability of concrete and cement composites summarises key research on these important topics.After an introductory chapter, the book reviews the pore structure and chemistry of cement-based materials, providing the foundation for understanding the particular aspects of degradation which are discussed in the following chapters. These include dimensional stability and cracking processes, chemical and microbiological degradation of concrete, corrosion of reinforcing and prestressing steels, deterioration associated with certain aggregates, effects of frost and problems involving fibre-reinforced and polymer-cement composites.With its distinguished international team of contributors, Durability of concrete and cement composites is a standard reference for all those concerned with improving the service life of structures using these materials. - Analyses a range of materials such as reinforced steel in concrete, pre-stressed concrete and cement composites - Discusses key degradation phenomena such as cracking processes and the impact of cold weather conditions - A standard reference for those concerned with improving the service life of structures using concrete and cement based composites
Addressing the interactions between the different design and construction variables and techniques this book illustrates best practices for constructing economical, long life concrete pavements. The book proceeds in much the same way as a pavement construction project. First, different alternatives for concrete pavement solutions are outlined. The desired performance and behaviour parameters are identified. Next, appropriate materials are outlined and the most suitable concrete proportions determined. The design can be completed, and then the necessary construction steps for translating the design into a durable facility are carried out. Although the focus reflects highways as the most common application, special features of airport, industrial, and light duty pavements are also addressed. Use is made of modeling and performance tools such as HIPERPAV and LTPP to illustrate behavior and performance, along with some case studies. As concrete pavements are more complex than they seem, and the costs of mistakes or of over-design can be high, this is a valuable book for engineers in both the public and private sectors.
This monograph describes cement clinker formation. It covers multicomponent systems, clinker phase structures and their reactions with water, hydrate composition and structure, as well as their physical properties. The mineral additions to cement are described as are their influence on cement-paste properties. Special cements are also discussed. The microstructure of concrete is then presented, and special emphasis is given to the role of the interfacial transition zone, and the corrosion processes in the light of cement-phase composition, mineral additions and w/c ratio. The admixtures' role in modern concrete technology is described with an emphasis on superplasticizer chemistry and its cement-paste rheological modification mechanism. Cement with atypical properties, such as calcium aluminate, white, low energy and expansive cements are characterized. The last part of the book is devoted to special types of concrete such as self compacting and to reactive powders.
Science and Technology of Concrete Admixtures presents admixtures from both a theoretical and practical point-of-view. The authors emphasize key concepts that can be used to better understand the working mechanisms of these products by presenting a concise overview on the fundamental behavior of Portland cement and hydraulic binders as well as their chemical admixtures, also discussing recent effects in concrete in terms of rheology, mechanics, durability, and sustainability, but never forgetting the fundamental role played by the water/binder ratio and proper curing in concrete technology. Part One presents basic knowledge on Portland cement and concrete, while Part Two deals with the chemical and physical background needed to better understand what admixtures are chemically, and through which mechanism they modify the properties of the fresh and hardened concrete. Subsequent sections present discussions on admixtures technology and two particular types of concrete, self-consolidating and ultra-high strength concretes, with final remarks on their future. - Combines the knowledge of two leading authors to present both the scientific and technology of admixtures - Explains what admixtures are from a chemical point-of-view and illustrates by which mechanisms they modify the properties of fresh and hardened concrete - Presents a fundamental, practical, and innovative reference book on the topic - Contains three detailed appendices that can be used to learn how to use admixtures more efficiently