Download Free Ectomycorrhizae Book in PDF and EPUB Free Download. You can read online Ectomycorrhizae and write the review.

Ectomycorrhizae: Their Ecology and Physiology provides an overview of the state of knowledge and opinion on the physiological ecology of ectomycorrhizae, which may be defined as symbiotic associations between nonpathogenic or weakly pathogenic fungi and living cells of roots. Although the book places considerable emphasis on forestry aspects of mycorrhizal problems, its wide ranging subject matter cuts across the boundaries of a number of traditional plant sciences. The book begins with discussions of the structure, cytology, and morphogenesis of mycorrhizae; their classification; and their distribution in native and man-made forests. It then deals with the growth of ectomycorrhizal fungi around seeds and roots; nutrition uptake; and the role of hormones in mycorrhizal development. The remaining chapters cover the rhizosphere; the role of mycorrhizae in feeder root diseases and the mechanisms for their resistance; and applications of mycorrhizal relations in forest management. This book will be of interest to a wide variety of researchers and teachers, especially agronomists, biochemists, foresters, horticulturists, mycologists, plant pathologists, soil scientists, plant ecologists, plant physiologists, and microbiologists.
Edible ectomycorrhizal mushrooms (EEMMs) comprise more than 1000 species and are an important food and forest resource. In this volume of Soil Biology, internationally recognized scientists offer their most recent research findings on these beguiling fungi. Topics covered include: complex ecological interactions between plants, EEMMs, and soil organisms; comparative genomics, high-throughput sequencing and modern research tools; genetic selection of fungal strains and techniques for inoculating plants; economic and social considerations surrounding wild collected EEMMs; and practical information concerning soil management and EEMM cultivation. The book will be a useful guide for anyone interested in soil ecology, forestry, or the genetics and cultivation of EEMMs, and provides an extensive knowledge base and inspirations for future studies on these ecologically and economically important fungi.
The roots of most plants are colonized by symbiotic fungi to form mycorrhiza, which play a critical role in the capture of nutrients from the soil and therefore in plant nutrition. Mycorrhizal Symbiosis is recognized as the definitive work in this area. Since the last edition was published there have been major advances in the field, particularly in the area of molecular biology, and the new edition has been fully revised and updated to incorporate these exciting new developments. - Over 50% new material - Includes expanded color plate section - Covers all aspects of mycorrhiza - Presents new taxonomy - Discusses the impact of proteomics and genomics on research in this area
Ectomycorrhizal fungi play multifunctional roles during symbioses with higher plants. They can serve as bioprotectors, biofertilizers, bioremediators and stress indicators. Further, they are the true “mycoindicators” of forest ecosystems, where an enormous diversity of ectomycorrhizal fungi can be found. Some ectomycorrhizal fungi also produce edible sporocarps, i.e., fruiting bodies, which are important for the food industry. Ectomycorrhizal fungi also produce various metal chelating molecules, which are of remarkable biotechnological significance and which also secrete useful secondary metabolites. Molecular approaches are required for the identification and differentiation of fungi forming symbioses with higher plants, while molecular tools are important to understand how genes are expressed during symbiosis with higher plants. Students, researchers and teachers of botany, mycology, microbiology, forestry, and biotechnology will find a valuable source of information in this Soil Biology volume.
Forty years after the discovery of the helix nature of DNA and more than twenty after the first applications of recombinant DNA technology to the pharmaceutical industry, the Pandora's vase of biotechnology seems far from being empty. New products for agriculture and the food industry are constantly being placed on the market, and powerful monitoring techniques have been developed to track non-modified and genetically modified vaccines, viruses, microbes and plants released into the environment. Molecular approaches for taxonomic purposes, which might also be useful for quality control and assurance, have been successfully developed and used for taxonomic purposes in the last decade for both prokaryotic and eukaryotic cells, including yeasts and filamentous fungi. Mycorrhizae are one example of a traditional biotechnology that can greatly benefit from the latest molecular approaches. These universal symbioses between soil fungi and plant roots playa central role in most of the natural and agricultural ecosystems in such key processes as nutrient cycling, soil structural conservation and plant health. For these reasons, mycorrhizae have been successfully used to improve the quality of forest and agricultural seedlings, to produce high-quality micropropagated plants and to increase the production of edible mushrooms of high economic value, such as truffles. However, although controlled inoculation of oak and hazel seedlings with ectomycorrhizal truffles has been carried out for decades in France and Italy, and is still expanding commercially, several technological gaps remain to be filled.
Below the soil surface, the rhizosphere is the dynamic interface among plant roots, soil microbes and fauna, and the soil itself, where biological as well as physico-chemical properties differ radically from those of bulk soil. The Rhizosphere is the first ecologically-focused book that explicitly establishes the links from extraordinarily small-scale processes in the rhizosphere to larger-scale belowground patterns and processes. This book includes chapters that emphasize the effects of rhizosphere biology on long-term soil development, agro-ecosystem management and responses of ecosystems to global change. Overall, the volume seeks to spur development of cross-scale links for understanding belowground function in varied natural and managed ecosystems. - First cross-scale ecologically-focused integration of information at the frontier of root, microbial, and soil faunal biology - Establishes the links from extraordinarily small-scale processes in the rhizosphere to larger-scale belowground patterns and processes - Includes valuable information on ecosystem response to increased atmospheric carbon dioxide and enhanced global nitrogen deposition - Chapters written by a variety of experts, including soil scientists, microbial and soil faunal ecologists, and plant biologists
The second edition of Mycorrhiza falls into a time period of excep tionally rapid growth in mycorrhizal research. Therefore the edi tors have been most pleased with the decision of the Springer Verlag to revise the first edition and to incorporate the remarkable advances experienced in the mycorrhizal field. The pace of discovery has been particularly fast at the two poles of biological complexity, the molecular events leading to changes in growth and differentiation, as well as the factors regulating the structure and diversity of natural populations and communities. Therefore the most significant changes introduced in the new edition of this book are found within these topics. Not only were many chapters up dated, but also new chapters have replaced existing ones. The individual decisions have not been easy, since valuable contribu tions had to be sacrificed in favour of new aspects; but the authors hope that a highly topical new edition will be of greatest benefit for a rapidly expanding field of research. We welcome comments and critics from readers. Since it was possible again to find leading scientists as contribu tors, we are confident that this revised second edition will stimulate further progress and contribute to a deeper understanding of advances in the mycorrhizal field. We are grateful to the Springer Verlag, especially Dr. Dieter Czeschlik, for his continued interest and active help. Dr. Maja Hilber-Bodmer and Dr.
Ectomycorrhizal symbiosis plays a major role in biodiversity and stability of ecosystems in tropical forests. It is a research imperative in tropical and neotropical forest ecosystems because they contain ecologically and economically important tree species. This book provides an overview of the knowledge of ECM symbioses in tropical and neotropica