Download Free Ecological Diversity And Its Measurement Book in PDF and EPUB Free Download. You can read online Ecological Diversity And Its Measurement and write the review.

Ecological diversity, or the variety and abundance of species in different habitats and communities, is one of the central themes of ecology. However, much of the existing literature on this subject is diffuse, often confusing, and in many cases complicated by unnecessarily difficult mathematics. This book aims to provide a succinct and clear summary of the relevant literature and a practical guide to the measurement of diversity. The author discusses the methods of describing ecological diversity in conjunction with specific recommendations for the selection and interpretation of diversity measures. In addition, she considers the sampling problems often encountered in ecological censusing. The work concludes with a discussion of the empirical value of diversity measures. A special feature that makes the book particularly accessible to readers without great expertise in mathematics is the inclusion of worked examples of the main diversity measures and models.
This accessible and timely book provides a comprehensive overview of how to measure biodiversity. The book highlights new developments, including innovative approaches to measuring taxonomic distinctness and estimating species richness, and evaluates these alongside traditional methods such as species abundance distributions, and diversity and evenness statistics. Helps the reader quantify and interpret patterns of ecological diversity, focusing on the measurement and estimation of species richness and abundance. Explores the concept of ecological diversity, bringing new perspectives to a field beset by contradictory views and advice. Discussion spans issues such as the meaning of community in the context of ecological diversity, scales of diversity and distribution of diversity among taxa Highlights advances in measurement paying particular attention to new techniques such as species richness estimation, application of measures of diversity to conservation and environmental management and addressing sampling issues Includes worked examples of key methods in helping people to understand the techniques and use available computer packages more effectively
Although diversity is one of the central themes of ecology there is considerable disagreement ab out how it should be measured. I first encountered this problem 10 ycars ago whcn I started my research career and spent a long time pouring ovcr the literature in order to find the most useful techniques. The intervening decade has seen a further increasc in the number ofpapers devoted to the topic of ecological diversity but has led to no consensus on how it should be measured. My aim in writing this book is therefore to provide a practical guide to ecological diversity and its measurement. In a quantitative subject such as the measurement of diversity it is inevitable that some mathematics are involved, but at all times these are kept as simple as possible, and the emphasis is constantly on ecological reality and practical application. I hope that others ente ring thc fascinating ficld of ecological diversity will find it hclpful. This book grew out of my work in The School of Biological and Environmental Studies at the New University ofUlster, Coleraine, Northern Ircland. I am indebted to all the ecologists there for pro vi ding a stimulating atmosphere. Foremost among these were Amyan Macfadyen and Palmer Newbould. A number of the figures and tables in the book are based on data collected in Northern Irish woodlands.
Measuring the abundance of individuals and the diversity of species are core components of most ecological research projects and conservation monitoring. This book brings together in one place, for the first time, the methods used to estimate the abundance of individuals in nature. The statistical basis of each method is detailed along with practical considerations for survey design and data collection. Methods are illustrated using data ranging from Alaskan shrubs to Yellowstone grizzly bears, not forgetting Costa Rican ants and Prince Edward Island lobsters. Where necessary, example code for use with the open source software R is supplied. When appropriate, reference is made to other widely used programs. After opening with a brief synopsis of relevant statistical methods, the first section deals with the abundance of stationary items such as trees, shrubs, coral, etc. Following a discussion of the use of quadrats and transects in the contexts of forestry sampling and the assessment of plant cover, there are chapters addressing line-intercept sampling, the use of nearest-neighbour distances, and variable sized plots. The second section deals with individuals that move, such as birds, mammals, reptiles, fish, etc. Approaches discussed include double-observer sampling, removal sampling, capture-recapture methods and distance sampling. The final section deals with the measurement of species richness; species diversity; species-abundance distributions; and other aspects of diversity such as evenness, similarity, turnover and rarity. This is an essential reference for anyone involved in advanced undergraduate or postgraduate ecological research and teaching, or those planning and carrying out data analysis as part of conservation survey and monitoring programmes.
4th edition of this classic Ecology text Computational methods have largely been replaced by descriptions of the available software Includes procedure information for R software and other freely available software systems Now includes web references for equipment, software and detailed methodologies
"Scale - the understanding of ecological phenomena through levels of biological organization across time and space - is one of most important concepts in ecology. It is often challenging for ecologists to find systems that lend themselves to study across scales; however, Sarracenia, a pitcher plant indigenous to the eastern United States, is unique because it can be studied at a hierarchy of scales: individuals, communities, and whole ecosystems. Ecologists Aaron Ellison and Nicolas Gotelli have studied Sarracenia for decades and, in this book, they synthesize their research and show how this system can inform the broad and challenging question of scaling in ecology. The authors' goal is to deepen the current understanding of major ecological processes, and how they operate across scales"--
A plethora of different theories, models, and concepts make up the field of community ecology. Amid this vast body of work, is it possible to build one general theory of ecological communities? What other scientific areas might serve as a guiding framework? As it turns out, the core focus of community ecology—understanding patterns of diversity and composition of biological variants across space and time—is shared by evolutionary biology and its very coherent conceptual framework, population genetics theory. The Theory of Ecological Communities takes this as a starting point to pull together community ecology's various perspectives into a more unified whole. Mark Vellend builds a theory of ecological communities based on four overarching processes: selection among species, drift, dispersal, and speciation. These are analogues of the four central processes in population genetics theory—selection within species, drift, gene flow, and mutation—and together they subsume almost all of the many dozens of more specific models built to describe the dynamics of communities of interacting species. The result is a theory that allows the effects of many low-level processes, such as competition, facilitation, predation, disturbance, stress, succession, colonization, and local extinction to be understood as the underpinnings of high-level processes with widely applicable consequences for ecological communities. Reframing the numerous existing ideas in community ecology, The Theory of Ecological Communities provides a new way for thinking about biological composition and diversity.
A comprehensive introduction to ocean ecology and a new way of thinking about ocean life Marine ecology is more interdisciplinary, broader in scope, and more intimately linked to human activities than ever before. Ocean Ecology provides advanced undergraduates, graduate students, and practitioners with an integrated approach to marine ecology that reflects these new scientific realities, and prepares students for the challenges of studying and managing the ocean as a complex adaptive system. This authoritative and accessible textbook advances a framework based on interactions among four major features of marine ecosystems—geomorphology, the abiotic environment, biodiversity, and biogeochemistry—and shows how life is a driver of environmental conditions and dynamics. Ocean Ecology explains the ecological processes that link organismal to ecosystem scales and that shape the major types of ocean ecosystems, historically and in today's Anthropocene world. Provides an integrated new approach to understanding and managing the ocean Shows how biological diversity is the heart of functioning ecosystems Spans genes to earth systems, surface to seafloor, and estuary to ocean gyre Links species composition, trait distribution, and other ecological structures to the functioning of ecosystems Explains how fishing, fossil fuel combustion, industrial fertilizer use, and other human impacts are transforming the Anthropocene ocean An essential textbook for students and an invaluable resource for practitioners
Conservation Biology in Sub-Saharan Africa comprehensively explores the challenges and potential solutions to key conservation issues in Sub-Saharan Africa. Easy to read, this lucid and accessible textbook includes fifteen chapters that cover a full range of conservation topics, including threats to biodiversity, environmental laws, and protected areas management, as well as related topics such as sustainability, poverty, and human-wildlife conflict. This rich resource also includes a background discussion of what conservation biology is, a wide range of theoretical approaches to the subject, and concrete examples of conservation practice in specific African contexts. Strategies are outlined to protect biodiversity whilst promoting economic development in the region. Boxes covering specific themes written by scientists who live and work throughout the region are included in each chapter, together with recommended readings and suggested discussion topics. Each chapter also includes an extensive bibliography. Conservation Biology in Sub-Saharan Africa provides the most up-to-date study in the field. It is an essential resource, available on-line without charge, for undergraduate and graduate students, as well as a handy guide for professionals working to stop the rapid loss of biodiversity in Sub-Saharan Africa and elsewhere.
Biodiversity: Structure and Function is a component of Encyclopedia of Environmental and Ecological Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on Biodiversity: Structure and Function discusses matters of great relevance to our world such as: Characterization of Biodiversity; Biodiversity and Ecosystem Functioning; Spatial and Temporal Dimensions of Biodiversity Dynamics; Evolutionary and Genetic Aspects of Biodiversity; Biodiversity Monitoring, Assessment, Data Management, and Indicators; The Value of Biodiversity; Halting Biodiversity Loss: Fundamentals and Latest Trends of Conservation Science and Action; Application of Ecological Knowledge to Habitat Restoration. These two volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.