Download Free Ecological And Practical Applications For Sustainable Agriculture Book in PDF and EPUB Free Download. You can read online Ecological And Practical Applications For Sustainable Agriculture and write the review.

Rampant industrialization, urbanization, and population growth have resulted in increased global environmental contamination. The productivity of agricultural soil is drastically deteriorated and requires a high dose of fertilizers to cultivate crops. To ensure food security, farmers are compelled to apply excess chemical fertilizers and insecticides that contaminate soil, air, and water. Heavy loads of chemical fertilizers not only degrade the quality of agricultural land but also pollute water and air. Use of chemical fertilizers also accelerate the release of greenhouse gases like nitrous oxide and methane along with nutrient runoff from the watershed in to lower elevation rivers and lakes, resulting in cultural eutrophication. Farming practices globally in developed, developing, and under-developing countries should utilize and promote sustainable methods through viable combined environmental, social, and economic means that improve rather than harm future generations. This can include use of non-synthetic fertilizers like compost, vermicompost, slow-release fertilizers, farmyard manures, crop rotations that include nitrogen-fixing legumes. Organic fertilizers like compost and vermicompost improve soil properties like texture, porosity, water-holding capacity, organic matter, as well as nutrient availability. The purpose of this book is to document the available alternatives of synthetic fertilizers, their mode of action, efficiency, preparation methodology, practical suggestions for sustainable practices, and needed research focus. The book will cover major disciplines like plant science, environmental science, agricultural science, agricultural biotechnology and microbiology, horticulture, soil science, atmospheric science, agro-forestry, agronomy, and ecology. This book is helpful for farmers, scientists, industrialists, research scholars, masters and graduate students, non-governmental organizations, financial advisers, and policy makers.
Good agroecological practices are indispensable for the development of sustainable agriculture. In this book, principles, diversity and applications of agroecological practices for a range of systems are presented, transforming scientific research and participatory knowledge of production into practical application. It illustrates a broad range of research and teaching being used within the farming community to demonstrate best practice and current state-of-play within the field. Agroecological methods used in crop farming, grass-based livestock farming, fish production, and other complex farming systems are discussed. Conclusions are drawn from studies to provide an outlook on future trends of agroecological practices and on policies supporting implementation.Due to emphasis on real-life application, it is relevant not only to students of the agricultural sciences and public policy, but also to researchers, stakeholders and policy makers involved in the development of sustainable agriculture.
Interest is growing in sustainable agriculture, which involves the use of productive and profitable farming practices that take advantage of natural biological processes to conserve resources, reduce inputs, protect the environment, and enhance public health. Continuing research is helping to demonstrate the ways that many factorsâ€"economics, biology, policy, and traditionâ€"interact in sustainable agriculture systems. This book contains the proceedings of a workshop on the findings of a broad range of research projects funded by the U.S. Department of Agriculture. The areas of study, such as integrated pest management, alternative cropping and tillage systems, and comparisons with more conventional approaches, are essential to developing and adopting profitable and sustainable farming systems.
Over the past decade, interest in plant biostimulants has been on the rise, compelled by the growing interest of researchers, extension specialists, private industries, and farmers in integrating these products in the array of environmentally friendly tools to secure improved crop performance, nutrient efficiency, product quality, and yield stability. Plant biostimulants include diverse organic and inorganic substances, natural compounds, and/or beneficial microorganisms such as humic acids, protein hydrolysates, seaweed and plant extracts, silicon, endophytic fungi like mycorrhizal fungi, and plant growth-promoting rhizobacteria belonging to the genera Azospirillum, Azotobacter, and Rhizobium. Other substances (e.g., chitosan and other biopolymers and inorganic compounds) can have biostimulant properties, but their classification within the group of biostimulants is still under consideration. Plant biostimulants are usually applied to high-value crops, mainly greenhouse crops, fruit trees and vines, open-field crops, flowers, and ornamentals to sustainably increase yield and product quality. The global biostimulant market is currently estimated at about $2.0 billion and is expected to reach $3.0 billion by 2021 at an annual growth rate of 13%. A growing interest in plant biostimulants from industries and scientists was demonstrated by the high number of published peer-reviewed articles, conferences, workshops, and symposia in the past ten years. This book compiles several original research articles, technology reports, methods, opinions, perspectives, and invited reviews and mini reviews dissecting the biostimulatory action of these natural compounds and substances and beneficial microorganisms on crops grown under optimal and suboptimal growing conditions (e.g., salinity, drought, nutrient deficiency and toxicity, heavy metal contaminations, waterlogging, and adverse soil pH conditions). Also included are contributions dealing with the effect as well as the molecular and physiological mechanisms of plant biostimulants on nutrient efficiency, product quality, and modulation of the microbial population both quantitatively and qualitatively. In addition, identification and understanding of the optimal method, time, rate of application and phenological stage for improving plant performance and resilience to stress as well as the best combinations of plant species/cultivar × environment × management practices are also reported. We strongly believe that high standard reflected in this compilation on the principles and practices of plant biostimulants will foster knowledge transfer among scientific communities, industries, and agronomists, and will enable a better understanding of the mode of action and application procedures of biostimulants in different cropping systems.
Continued population growth, rapidly changing consumption patterns and the impacts of climate change and environmental degradation are driving limited resources of food, energy, water and materials towards critical thresholds worldwide. These pressures are likely to be substantial across Africa, where countries will have to find innovative ways to boost crop and livestock production to avoid becoming more reliant on imports and food aid. Sustainable agricultural intensification - producing more output from the same area of land while reducing the negative environmental impacts - represents a solution for millions of African farmers. This volume presents the lessons learned from 40 sustainable agricultural intensification programmes in 20 countries across Africa, commissioned as part of the UK Government's Foresight project. Through detailed case studies, the authors of each chapter examine how to develop productive and sustainable agricultural systems and how to scale up these systems to reach many more millions of people in the future. Themes covered include crop improvements, agroforestry and soil conservation, conservation agriculture, integrated pest management, horticulture, livestock and fodder crops, aquaculture, and novel policies and partnerships.
The Art of Agriculture is the first English edition of Obra de Agricultura by Gabriel Alonso de Herrera, an agriculture instruction manual originally written in Granada, Spain, in 1513 and published there in 1539. Herrera, widely considered the Father of Modern Spanish Agriculture, wrote this treatise nearly five centuries ago, thoughtfully recounting traditional farming techniques of the Moors before their expulsion from Spain, the Spanish colonizers in the early 1600s, and the rural Indo-Hispano bioregion spanning northern New Mexico and southern Colorado. Today, farmers, gardeners, and ecological horticulturists are striving to work in harmony with nature, using traditional irrigation methods (involving acequias, sangras, and arroyos) to transform barren high-desert landscapes into fields supporting crop growth. This book speaks to today's farmers, no matter their size or output, in drought-ridden areas with land patterns characterized by natural ditches (acequias) and community water distribution systems (suertes). This type of agriculture exists not only in the American Southwest but from the Philippines to India to the Middle East. With global warming, water usage, and increased populations today, this book is more pertinent now than ever. Practical as well as philosophical, The Art of Agriculture will fascinate anyone interested in organic farming, sustainable agriculture, and permaculture worldwide.
This book incorporates new insights and concepts in the hope of helping guide agricultural students, researchers, and practitioners to a deeper understanding of the ecology of agricultural systems that will open the doors to new management options with the objectives of sustainable agriculture.
For nearly a century, scientific advances have fueled progress in U.S. agriculture to enable American producers to deliver safe and abundant food domestically and provide a trade surplus in bulk and high-value agricultural commodities and foods. Today, the U.S. food and agricultural enterprise faces formidable challenges that will test its long-term sustainability, competitiveness, and resilience. On its current path, future productivity in the U.S. agricultural system is likely to come with trade-offs. The success of agriculture is tied to natural systems, and these systems are showing signs of stress, even more so with the change in climate. More than a third of the food produced is unconsumed, an unacceptable loss of food and nutrients at a time of heightened global food demand. Increased food animal production to meet greater demand will generate more greenhouse gas emissions and excess animal waste. The U.S. food supply is generally secure, but is not immune to the costly and deadly shocks of continuing outbreaks of food-borne illness or to the constant threat of pests and pathogens to crops, livestock, and poultry. U.S. farmers and producers are at the front lines and will need more tools to manage the pressures they face. Science Breakthroughs to Advance Food and Agricultural Research by 2030 identifies innovative, emerging scientific advances for making the U.S. food and agricultural system more efficient, resilient, and sustainable. This report explores the availability of relatively new scientific developments across all disciplines that could accelerate progress toward these goals. It identifies the most promising scientific breakthroughs that could have the greatest positive impact on food and agriculture, and that are possible to achieve in the next decade (by 2030).