Download Free Earths Climate And Orbital Eccentricity Book in PDF and EPUB Free Download. You can read online Earths Climate And Orbital Eccentricity and write the review.

Proceedings of the NATO Advanced Research Workshop, Palisades, New York, U.S.A., November 30-December 4, 1982
For centuries, scientists have been fascinated by the role of the Sun in the Earth's climate system. Recent discoveries, outlined in this book, have gradually unveiled a complex picture, in which our variable Sun affects the climate variability via a number of subtle pathways, the implications of which are only now becoming clear. This handbook provides the scientifically curious, from undergraduate students to policy makers with a complete and accessible panorama of our present understanding of the Sun-climate connection. 61 experts from different communities have contributed to it, which reflects the highly multidisciplinary nature of this topic. The handbook is organised as a mosaic of short chapters, each of which addresses a specific aspect, and can be read independently. The reader will learn about the assumptions, the data, the models, and the unknowns behind each mechanism by which solar variability may impact climate variability. None of these mechanisms can adequately explain global warming observed since the 1950s. However, several of them do impact climate variability, in particular on a regional level. This handbook aims at addressing these issues in a factual way, and thereby challenge the reader to sharpen his/her critical thinking in a debate that is frequently distorted by unfounded claims.
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 137. Weather bureaus around the world have accumulated daily historical records of atmospheric conditions for more than a century to help forecast meteorological conditions three to five days ahead. To gain insight into the impact of possible future climate warming and constrain predictive models for a warm future, climatologists are seeking paleoclimatologic and paleoceanographic records from the most recent intervals in the Quaternary when conditions were demonstrably warmer than they are today. In the past 2.5 My, Earth climate has oscillated from cold (glacial) to warm (interglacial) intervals. We currently live in a warm interval, the Holocene, during which the climate has remained relatively constant for about 10 ky. Because the Holocene is nearly as long now as the previous interglacial, scientists have projected the possibly imminent onset of another ice age, excluding human intervention. Whether or not this will occur is a question of some significance, and has sparked debate. Finding an analogue to our current status in other recent interglacials offers substantive aid in clarifying the question just mentioned, and others, concerning global climate change over varying geologic time periods.
Summarizes invited and contributed papers from the May 1992 Project pangea workshop in Lawrence, Kansas. Topics include the climatic evolution of India and Australia, pangean orogenic and epeirogenic uplifts, permian climatic cooling in the Canadian Arctic, and pangean shelf carbonates. Annotation c
Between 1930 and 2030, the world's population will have flipped from 70% rural to 70% urban. While much has been written about the impacts of climate change and mitigation of its effects on individual buildings or infrastructure, this book is one of the first to focus on the resilience of whole cities. It covers a broad range of area-wide disaster-level impacts, including drought, heatwaves, flooding, storms and air quality, which many of our cities are ill-adapted to cope with, and unless we can increase the resilience of our urban areas then much of our current building stock may become uninhabitable.
To understand climate change today, we first need to know how Earth’s climate changed over the past 450 million years. Finding answers depends upon contributions from a wide range of sciences, not just the rock record uncovered by geologists. In Earth’s Climate Evolution, Colin Summerhayes analyzes reports and records of past climate change dating back to the late 18th century to uncover key patterns in the climate system. The book will transform debate and set the agenda for the next generation of thought about future climate change. The book takes a unique approach to the subject providing a description of the greenhouse and icehouse worlds of the past 450 million years since land plants emerged, ignoring major earlier glaciations like that of Snowball Earth, which occurred around 600 million years ago in a world free of land plants. It describes the evolution of thinking in palaeoclimatology and introduces the main players in the field and how their ideas were received and, in many cases, subsequently modified. It records the arguments and discussions about the merits of different ideas along the way. It also includes several notes made from the author’s own personal involvement in palaeoclimatological and palaeoceanographic studies, and from his experience of working alongside several of the major players in these fields in recent years. This book will be an invaluable reference for both undergraduate and postgraduate students taking courses in related fields and will also be of interest to historians of science and/or geology, climatology and oceanography. It should also be of interest to the wider scientific and engineering community, high school science students, policy makers, and environmental NGOs. Reviews: "Outstanding in its presentation of the facts and a good read in the way that it intersperses the climate story with the author's own experiences. [This book] puts the climate story into a compelling geological history." -Dr. James Baker "The book is written in very clear and concise prose, [and takes] original, enlightening, and engaging approach to talking about 'ideas' from the perspective of the scientists who promoted them." -Professor Christopher R. Scotese "A thrilling ride through continental drift and its consequences." - Professor Gerald R. North "Written in a style and language which can be easily understood by laymen as well as scientists." - Professor Dr Jörn Thiede "What makes this book particularly distinctive is how well it builds in the narrative of change in ideas over time." - Holocene book reviews, May 2016 "This is a fascinating book and the author’s biographical approach gives it great human appeal." - E Adlard
This volume reviews all aspects of Mars atmospheric science from the surface to space, and from now and into the past.
Changes in climate are driven by natural and human-induced perturbations of the Earth's energy balance. These climate drivers or "forcings" include variations in greenhouse gases, aerosols, land use, and the amount of energy Earth receives from the Sun. Although climate throughout Earth's history has varied from "snowball" conditions with global ice cover to "hothouse" conditions when glaciers all but disappeared, the climate over the past 10,000 years has been remarkably stable and favorable to human civilization. Increasing evidence points to a large human impact on global climate over the past century. The report reviews current knowledge of climate forcings and recommends critical research needed to improve understanding. Whereas emphasis to date has been on how these climate forcings affect global mean temperature, the report finds that regional variation and climate impacts other than temperature deserve increased attention.