Download Free Earthquake In Romania Book in PDF and EPUB Free Download. You can read online Earthquake In Romania and write the review.

These proceedings include most of the available information on this major seismic event and its consequences. With an estimated moment magnitude of 7.7 and a heavy toll in terms of human and economic losses, it ranks as the largest intermediate-depth earthquake in Europe in the twentieth century. Nevertheless, because of the difficult conditions in the 1940s, the lessons learnt after the Vrancea earthquake were not extensively shared with the international scientific community and thus, this book fills a gap in the literature discussing the knowledge acquired after major disasters. Past experience together with current understanding of the 1940 Vrancea earthquake are presented along with the latest information on Romanian seismicity, seismic hazard and risk assessment, and seismic evaluation and rehabilitation of buildings and structures. Moreover, it includes excerpts from Romanian post-disaster reports and textbooks concerning the earthquake.
This book contains the best contributions presented during the 6th National Conference on Earthquake Engineering and the 2nd National Conference on Earthquake Engineering and Seismology - 6CNIS & 2CNISS, that took place on June 14-17, 2017 in Bucharest - Romania, at the Romanian Academy and Technical University of Civil Engineering of Bucharest. The book offers an updated overview of seismic hazard and risk assessment activities, with an emphasis on recent developments in Romania, a very challenging case study because of its peculiar intermediate-depth seismicity and evolutive code-compliant building stock. Moreover, the book collects input of renowned scientists and professionals from Germany, Greece, Italy, Japan, Netherlands, Portugal, Romania, Spain, Turkey and United Kingdom.The content of the book focuses on seismicity of Romania, geotechnical earthquake engineering, structural analysis and seismic design regulations, innovative solutions for seismic protection of building structures, seismic risk evaluation, resilience-based assessment of structures and management of emergency situations. The sub-chapters consist of the best papers of 6CNIS & 2CNISS selected by the International Advisory and Scientific Committees. The book is targeted at researchers and experts in seismic hazard and risk, evaluation and rehabilitation of buildings and structures, insurers and re-insurers, and decision makers in the field of emergency situations and recovery activities.
The NATO Science for Peace Project SfP-980468 Harmonization of Seismic Hazard and Risk Reduction in Countries Influenced by Vrancea Earthquakes was an ambitious attempt to harmonize the seismic-hazard assessment in Bulgaria, Moldova and Romania, and provide the guidelines for seismic risk reduction in the target countries. Related to the study of intermediate-depth Vrancea earthquakes, it became operational in 2005. The project co-coordinators were as follows: • Prof. Güney Özcebe, Ankara, Turkey; • Dr. Anton Zaicenco, Chisinau, Moldova; • Dr. Iolanda Craifaleanu, Bucharest, Romania; • Prof. Ivanka Paskaleva, Sofia, Bulgaria. The project has brought together leading research personalities in the area of earthquake engineering, seismology and earth physics from several countries for brainstorming sessions, informal discussions, and exchanges of ideas. One of its key components was an upgrade of the strong-motion seismic networks of the countries-participants, which created a foundation for a long-term collaboration. A number of papers have been published as a result of the work conducted under this project. The present book contains the Proceedings of the Closing Workshop for Project SfP-980468, which was organized in Chisinau, Moldova on May 20, 2008. From hazard analyses to protection of the historical buildings, from study of the dynamic properties of the soft soils to paleoseismology, there are few areas of interest that remain untouched. Research from the NATO members and partner countries in South-Eastern Europe that forms the components of NATO Project SfP-980468 has made solid contributions to the Workshop theme.
This book discusses the impact of long-period ground motions on structural design using the situation in Bucharest, the capital city of Romania, as a case study. The first part explores the seismic hazard situation in Bucharest, and the causes of long-period ground motions related to both the source and the site. Subsequently, it examines the current seismic design, detailing building practices in Bucharest, and discusses the impact of long-period ground motions on seismic design. Lastly, several case study buildings in Bucharest are presented and the major difficulties encountered in their design are considered. The book also includes various numerical examples that help readers understand the impact of long-period ground motions on various structural systems, that are currently used in Bucharest. This book is intended for researchers in the field of seismic hazard and risk assessment and designers of multi-story buildings in seismic areas.
A comprehensive, topical, historical, and geographical summary of deep earthquakes and related phenomena.
​The classical field dealing with earthquakes is called “earthquake engineering” and considered to be a branch of structural engineering. In projects dealing with strategies for earthquake risk mitigation, urban planning approaches are often neglected. Today interventions are needed on a city, rather than a building, scale. This work deals with the impact of earthquakes, including also a broader view on multihazards in urban areas. Uniquely among other works in the field, particular importance is given to urban planning issues, in conservation of heritage and emergency management. Multicriteria decision making and broad participation of those affected by disasters are included.
This book examines historical evidence from the last 2000 years to analyse earthquakes in the eastern Mediterranean and Middle East. Early chapters review techniques of historical seismology, while the main body of the book comprises a catalogue of more than 4000 earthquakes identified from historical sources. Each event is supported by textual evidence extracted from primary sources and translated into English. Covering southern Rumania, Greece, Turkey, Lebanon, Israel, Egypt, Jordan, Syria, and Iraq, the book documents past seismic events, places them in a broad tectonic framework, and provides essential information for those attempting to prepare for, and mitigate the effects of, future earthquakes and tsunamis in these countries. This volume is an indispensable reference for researchers studying the seismic history of the eastern Mediterranean and Middle East, including archaeologists, historians, earth scientists, engineers and earthquake hazard analysts. A parametric catalogue of these seismic events can be downloaded from www.cambridge.org/9780521872928.
This volume collects several extended articles from the first workshop on Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations (BestPSHANI). Held in 2015, the workshop was organized by the IAEA to disseminate the use of physics-based fault-rupture models for ground motion prediction in seismic hazard assessments (SHA). The book also presents a number of new contributions on topics ranging from the seismological aspects of earthquake cycle simulations for source scaling evaluation, seismic source characterization, source inversion and physics-based ground motion modeling to engineering applications of simulated ground motion for the analysis of seismic response of structures. Further, it includes papers describing current practices for assessing seismic hazard in terms of nuclear safety in low seismicity areas, and proposals for physics-based hazard assessment for critical structures near large earthquakes. The papers validate and verify the models by comparing synthetic results with observed data and empirical models. The book is a valuable resource for scientists, engineers, students and practitioners involved in all aspects of SHA.