Download Free Dynamics Of Power Book in PDF and EPUB Free Download. You can read online Dynamics Of Power and write the review.

Liberate yourself by understanding and mastering power dynamics All social relations are laden with power. Getting out from under dominant power relations and mastering power dynamics is perhaps the most essential skill for change agents across all sectors seeking to ignite positive change in the world. This concise action manual explores major concepts of power, with a focus on the dynamics of domination and liberation, and presents methods for shifting power relations and enacting freedom. The Power Manual: Clearly distills the major theories of power from post-modern and feminist theory to business management and developmental psychology, and beyond Examines key ways that power is deployed and transformed in society Presents a new theory of power based on enactment-the bringing of something to life through one's actions Explains how to refuse powerless identities and enact powerful ones Helps readers choose egalitarian interactions over domination Demonstrates mastering the process of power expansion Features workshop games and group activities for identifying and shifting power relations. This accessible action manual is ideal for change agents, leaders, and activists across all nonprofit and business sectors aiming to understand, master, and shift power relations.
As an outgrowth of Kaufman's work on shame, this book's comprehensive educational curriculum for psychological health and self-esteem has professional, educational, and personal relevance. The principles and tools in this book directly combat addiction, violence, and stress-related disorders by reversing the very conditions responsible for them: shame and powerlessness.
Dynamic estimation and control is a fast growing and widely researched field of study that lays the foundation for a new generation of technologies that can dynamically, adaptively and automatically stabilize power systems. This book provides a comprehensive introduction to research techniques for real-time estimation and control of power systems. Dynamic Estimation and Control of Power Systems coherently and concisely explains key concepts in a step by step manner, beginning with the fundamentals and building up to the latest developments of the field. Each chapter features examples to illustrate the main ideas, and effective research tools are presented for signal processing-based estimation of the dynamic states and subsequent control, both centralized and decentralized, as well as linear and nonlinear. Detailed mathematical proofs are included for readers who desire a deeper technical understanding of the methods. This book is an ideal research reference for engineers and researchers working on monitoring and stability of modern grids, as well as postgraduate students studying these topics. It serves to deliver a clear understanding of the tools needed for estimation and control, while also acting as a basis for readers to further develop new and improved approaches in their own research. Offers the first concise, single resource on dynamic estimation and control of power systems Provides both an understanding of estimation and control concepts and a comparison of results Includes detailed case-studies, including MATLAB codes, to explain and demonstrate the concepts presented
Classic power system dynamics text now with phasor measurement and simulation toolbox This new edition addresses the needs of dynamic modeling and simulation relevant to power system planning, design, and operation, including a systematic derivation of synchronous machine dynamic models together with speed and voltage control subsystems. Reduced-order modeling based on integral manifolds is used as a firm basis for understanding the derivations and limitations of lower-order dynamic models. Following these developments, multi-machine model interconnected through the transmission network is formulated and simulated using numerical simulation methods. Energy function methods are discussed for direct evaluation of stability. Small-signal analysis is used for determining the electromechanical modes and mode-shapes, and for power system stabilizer design. Time-synchronized high-sampling-rate phasor measurement units (PMUs) to monitor power system disturbances have been implemented throughout North America and many other countries. In this second edition, new chapters on synchrophasor measurement and using the Power System Toolbox for dynamic simulation have been added. These new materials will reinforce power system dynamic aspects treated more analytically in the earlier chapters. Key features: Systematic derivation of synchronous machine dynamic models and simplification. Energy function methods with an emphasis on the potential energy boundary surface and the controlling unstable equilibrium point approaches. Phasor computation and synchrophasor data applications. Book companion website for instructors featuring solutions and PowerPoint files. Website for students featuring MATLABTM files. Power System Dynamics and Stability, 2nd Edition, with Synchrophasor Measurement and Power System Toolbox combines theoretical as well as practical information for use as a text for formal instruction or for reference by working engineers.
Converter-Based Dynamics and Control of Modern Power Systems addresses the ongoing changes and challenges in rotating masses of synchronous generators, which are transforming dynamics of the electrical system. These changes make it more important to consider and understand the role of power electronic systems and their characteristics in shaping the subtleties of the grid and this book fills that knowledge gap. Balancing theory, discussion, diagrams, mathematics, and data, this reference provides the information needed to acquire a thorough overview of resilience issues and frequency definition and estimation in modern power systems. This book offers an overview of classical power system dynamics and identifies ways of establishing future challenges and how they can be considered at a global level to overcome potential problems. The book is designed to prepare future engineers for operating a system that will be driven by electronics and less by electromechanical systems. Includes theory on the emerging topic of electrical grids based on power electronics Creates a good bridge between traditional theory and modern theory to support researchers and engineers Links the two fields of power systems and power electronics in electrical engineering
Fluid Power Dynamics is a 12-chapter book in two sections covering the basics of fluid power through hydraulic system components and troubleshooting. The second section covers pneumatics from basics through to troubleshooting. This is the latest book in a new series published by Butterworth-Heinemann in association with PLANT ENGINEERING magazine. PLANT ENGINEERING fills a unique information need for the men and women who operate and maintain industrial plants: It bridges the information gap between engineering education and practical application. As technology advances at increasingly faster rates, this information service is becoming more and more important. Since its first issue in 1947, PLANT ENGINEERING has stood as the leading problem-solving information source for America's industrial plant engineers, and this book series will effectively contribute to that resource and reputation.
This book explores the nature of intimacy by revealing how the influence of individual, interpersonal and wider social factors create variations in self-disclosure, intimacy games and relationship habits. It describes how the dynamics of power and control in relationships give rise either to mutual satisfaction or to the unraveling of intimacy.
Given that people who are distressed often choose to go for help in therapy, it is therapists' duty and responsibility to deconstruct practices and to be clear about the ethics, values and effects of the practices they use. This book is based on the values and ethics of justice and responsibility, to resist domination and totalising discourses.
This book aims to provide insights on new trends in power systems operation and control and to present, in detail, analysis methods of the power system behavior (mainly its dynamics) as well as the mathematical models for the main components of power plants and the control systems implemented in dispatch centers. Particularly, evaluation methods for rotor angle stability and voltage stability as well as control mechanism of the frequency and voltage are described. Illustrative examples and graphical representations help readers across many disciplines acquire ample knowledge on the respective subjects.
An authoritative guide to the most up-to-date information on power system dynamics The revised third edition of Power System Dynamics and Stability contains a comprehensive, state-of-the-art review of information on the topic. The third edition continues the successful approach of the first and second editions by progressing from simplicity to complexity. It places the emphasis first on understanding the underlying physical principles before proceeding to more complex models and algorithms. The book is illustrated by a large number of diagrams and examples. The third edition of Power System Dynamics and Stability explores the influence of wind farms and virtual power plants, power plants inertia and control strategy on power system stability. The authors—noted experts on the topic—cover a range of new and expanded topics including: Wide-area monitoring and control systems. Improvement of power system stability by optimization of control systems parameters. Impact of renewable energy sources on power system dynamics. The role of power system stability in planning of power system operation and transmission network expansion. Real regulators of synchronous generators and field tests. Selectivity of power system protections at power swings in power system. Criteria for switching operations in transmission networks. Influence of automatic control of a tap changing step-up transformer on the power capability area of the generating unit. Mathematical models of power system components such as HVDC links, wind and photovoltaic power plants. Data of sample (benchmark) test systems. Power System Dynamics: Stability and Control, Third Edition is an essential resource for students of electrical engineering and for practicing engineers and researchers who need the most current information available on the topic.