Download Free Dynamics Of High Speed Railway Bridges Book in PDF and EPUB Free Download. You can read online Dynamics Of High Speed Railway Bridges and write the review.

The commercial operation of the bullet train in 1964 in Japan marked the beginning of a new era for high-speed railways. Because of the huge amount of kinetic energy carried at high speeds, a train may interact significantly with the bridge and even resonate with it under certain circumstances. Equally important is the riding comfort of the train cars, which relates closely to the maneuverability of the train during its passage over the bridge at high speeds.This book is unique in that it is devoted entirely to the interaction between the supporting bridges and moving trains, the so-called vehicle-bridge interaction (VBI). Finite element procedures have been developed to treat interaction problems of various complexities, while the analytical solutions established for some typical problems are helpful for identifying the key parameters involved. Besides, some field tests were conducted to verify the theories established.This book provides an up-to-date coverage of research conducted on various aspects of the VBI problems. Using the series of VBI elements derived, the authors study a number of frontier problems, including the impact response of bridges with elastic bearings, the dynamic response of curved beam to moving centrifugal forces, the stability and derailment of trains moving over bridges shaken by earthquakes, the impact response of two trains crossing on a bridge, the steady-state response of trains moving over elevated bridges, and so on.
The dynamic behaviour of bridges strongly affects the infrastructure system of high-speed railways, and is a crucial factor in safety issues and passenger comfort. Dynamics of High-Speed Railway Bridges covers the latest research in this field, including: Recently developed dynamic analysis techniques; Train excitations; Design issues fo
This book presents both the fundamental theory and numerical calculations and field experiments used in a range of practical engineering projects. It not only provides theoretical formulations and various solutions, but also offers concrete methods to extend the life of existing bridge structures and presents a guide to the rational design of new bridges, such as high-speed railway bridges and long-span bridges. Further, it offers a reference resource for solving vehicle–structure dynamic interaction problems in the research on and design of all types of highways, railways and other transport structures.
Since the 1980s in Europe high-speed rail has emerged rapidly as a means of transportation, and in the upcoming years many more tunnel, bridge and other infrastructure projects will be developed across the continent. At the same time design concepts and technologies have improved and innovative structural ideas have appeared, since trains travellin
Provides a comprehensive survey of the dynamic stresses in railway bridges under moving vehicles and summarizes important theoretical and experimental results which has been obtained from various research programs dealing with European railway bridges.
Dynamic Analysis of High-Speed Railway Alignment: Theory and Practice elaborates on the dynamic analysis theory and method on spatial alignment parameters of high-speed railways, revealing the interaction mechanism between vehicle-track dynamic performance and track parameters of high-speed railways. It ascertains the influence rules of track structure and track geometry on vehicle-track dynamic performance, establishes the relationship models between vehicle-track dynamic performance and curve dynamic characteristic parameters, and defines the calculation relationship between lateral acceleration of car body on curves and track parameters. This book can be used as a reference book for scientific researchers, engineering technicians and management engaged in railway engineering, and will be very helpful for railway technicians who want to learn more about route planning, design, and construction and maintenance technologies of high-speed railways. - Presents the dynamic effects between the running speed of high-speed trains on curves and spatial curve technical parameters - Provides dynamic analysis, theory and methods on curve parameters of high-speed railways and improves the calculation theory on spatial alignment of high-speed railways - Covers minimum curve radius, transition curve length, minimum radius of vertical curve, steepest slope, minimum slope length and length of intermediate straight line
The commercial operation of the bullet train in 1964 in Japan marked the beginning of a new era for high-speed railways. Because of the huge amount of kinetic energy carried at high speeds, a train may interact significantly with the bridge and even resonate with it under certain circumstances. Equally important is the riding comfort of the train cars, which relates closely to the maneuverability of the train during its passage over the bridge at high speeds.This book is unique in that it is devoted entirely to the interaction between the supporting bridges and moving trains, the so-called vehicle-bridge interaction (VBI). Finite element procedures have been developed to treat interaction problems of various complexities, while the analytical solutions established for some typical problems are helpful for identifying the key parameters involved. Besides, some field tests were conducted to verify the theories established.This book provides an up-to-date coverage of research conducted on various aspects of the VBI problems. Using the series of VBI elements derived, the authors study a number of frontier problems, including the impact response of bridges with elastic bearings, the dynamic response of curved beam to moving centrifugal forces, the stability and derailment of trains moving over bridges shaken by earthquakes, the impact response of two trains crossing on a bridge, the steady-state response of trains moving over elevated bridges, and so on.
The need for large-scale bridges is constantly growing worldwide, as the expansion of transport infrastructures with rail roads and high-speed lines is an important current task in many regions. This book develops all aspects referring to the structural conceptional design and analysis that are taken into account when planning a bridge or viaduct for a high-speed rail line. That includes the characteristics of the railway traffic such as speeds, actions, limit states, etc., and a detailed analysis of the superstructure of the track with its various components and singular elements. One of the special features of the book is that it not only highlights the bridge typologies and structural components related to the bridge design but also takes into account the issues of the track construction. The design basis, the requirements from different situations, and solutions are given. Special attention is paid to the interactions between the structure and the track and to the dynamic nature of railway actions, studying the dynamic response of the structure and its influence on the behaviour of the track and its components as well as on safety, traffic flow quality, and maintenance needs. The particulars of the design of high-speed rail bridges located in seismic areas are included as well. Numerous examples in all chapters serve the book's character as a useful guide to HSR bridge design, and to prevent typical problems and errors. An appendix with selected HSR bridges built worldwide completes the work. With this work the authors provide first-hand experience gained from many years of planning of completed bridges for high-speed rail lines.
The proceedings contain contributions presented by authors from more than 30 countries at EURODYN 2002. The proceedings show recent scientific developments as well as practical applications, they cover the fields of theory of vibrations, nonlinear vibrations, stochastic dynamics, vibrations of structured elements, wave propagation and structure-borne sound, including questions of fatigue and damping. Emphasis is laid on vibrations of bridges, buildings, railway structures as well as on the fields of wind and earthquake engineering, repectively. Enriched by a number of keynote lectures and organized sessions the two volumes of the proceedings present an overview of the state of the art of the whole field of structural dynamics and the tendencies ot its further development.