Download Free Dynamics And Control Of Mechanical Systems In Offshore Engineering Book in PDF and EPUB Free Download. You can read online Dynamics And Control Of Mechanical Systems In Offshore Engineering and write the review.

Dynamics and Control of Mechanical Systems in Offshore Engineering is a comprehensive treatment of marine mechanical systems (MMS) involved in processes of great importance such as oil drilling and mineral recovery. Ranging from nonlinear dynamic modeling and stability analysis of flexible riser systems, through advanced control design for an installation system with a single rigid payload attached by thrusters, to robust adaptive control for mooring systems, it is an authoritative reference on the dynamics and control of MMS. Readers will gain not only a complete picture of MMS at the system level, but also a better understanding of the technical considerations involved and solutions to problems that commonly arise from dealing with them. The text provides: · a complete framework of dynamical analysis and control design for marine mechanical systems; · new results on the dynamical analysis of riser, mooring and installation systems together with a general modeling method for a class of MMS; · a general method and strategy for realizing the control objectives of marine systems with guaranteed stability the effectiveness of which is illustrated by extensive numerical simulation; and · approximation-based control schemes using neural networks for installation of subsea structures with attached thrusters in the presence of time-varying environmental disturbances and parametric uncertainties. Most of the results presented are analytical with repeatable design algorithms with proven closed-loop stability and performance analysis of the proposed controllers is rigorous and detailed. Dynamics and Control of Mechanical Systems in Offshore Engineering is primarily intended for researchers and engineers in the system and control community, but graduate students studying control and marine engineering will also find it a useful resource as will practitioners working on the design, running or maintenance of offshore platforms.
The papers in this edited volume aim to provide a better understanding of the dynamics and control of a large class of hybrid dynamical systems that are described by different models in different state space domains. They not only cover important aspects and tools for hybrid systems analysis and control, but also a number of experimental realizations. Special attention is given to synchronization a universal phenomenon in nonlinear science that gained tremendous significance since its discovery by Huygens in the 17th century. Possible applications of the results introduced in the book include control of mobile robots, control of CD/DVD players, flexible manufacturing lines, and complex networks of interacting agents. The book is based on the material presented at a similarly entitled minisymposium at the 6th European Nonlinear Dynamics Conference held in St Petersburg in 2008. It is unique in that it contains results of several international and interdisciplinary collaborations in the field, and reflects state-of-the-art technological development in the area of hybrid mechanical systems at the forefront of the 21st century.
This book provides a comprehensive review of fundamental issues in the dynamical modeling and vibration control design for several flexible mechanical systems, such as flexible satellites, flexible aerial refueling hoses, and flexible three-dimensional manipulators. Offering an authoritative reference guide to the dynamics and control of flexible mechanical systems, it equips readers to solve a host of problems concerning these systems. It provides not only a complete overview of flexible systems, but also a better understanding of the technical levels involved. The book is divided into ten chapters: Chapters 1 and 2 lay the foundations, while the remaining chapters explore several independent yet related topics in detail. The book’s final chapter presents conclusions and recommendations for future research. Given its scope, the book is intended for researchers, graduate students, and engineers whose work involves control systems, flexible mechanical systems, and related areas.
The control of vibrating systems is a significant issue in the design of aircraft, spacecraft, bridges and high-rise buildings. This 2001 book discusses the control of vibrating systems, integrating structural dynamics, vibration analysis, modern control and system identification. Integrating these subjects is an important feature in that engineers will need only one book, rather than several texts or courses, to solve vibration control problems. The book begins with a review of basic mathematics needed to understand subsequent material. Chapters then cover more recent and valuable developments in aerospace control and identification theory, including virtual passive control, observer and state-space identification, and data-based controller synthesis. Many practical issues and applications are addressed, with examples showing how various methods are applied to real systems. Some methods show the close integration of system identification and control theory from the state-space perspective, rather than from the traditional input-output model perspective of adaptive control. This text will be useful for advanced undergraduate and beginning graduate students in aerospace, mechanical and civil engineering, as well as for practising engineers.
In this book, we collected recent results on the control of underactuated mechanical systems subject to internal uncertainties and external disturbances. The strategy developed is so universal that it is not restricted to a specific system but a large class of underactuated systems. Several benchmark systems are studied in this book, including detailed literature review, system dynamics derivation, control problem formulation, and simulation verification. The control strategy developed in chapter 4 is able to stabilize all these benchmark systems with satisfactory performance regardless of the underactuated dynamics and various uncertainties. The book is written as a text suitable for graduate students in the advanced course for the control of underactuated systems. It also provides valuable tools for researchers and practicing engineers working on the control of underactuated mechanical systems.
Recent years have witnessed a rapid development of active control of various mechanical systems. With increasingly strict requirements for control speed and system performance, the unavoidable time delays in both controllers and actuators have become a serious problem. For instance, all digital controllers, analogue anti aliasing and reconstruction filters exhibit a certain time delay during operation, and the hydraulic actuators and human being interaction usually show even more significant time delays. These time delays, albeit very short in most cases, often deteriorate the control performance or even cause the instability of the system, be cause the actuators may feed energy at the moment when the system does not need it. Thus, the effect of time delays on the system performance has drawn much at tention in the design of robots, active vehicle suspensions, active tendons for tall buildings, as well as the controlled vibro-impact systems. On the other hand, the properly designed delay control may improve the performance of dynamic sys tems. For instance, the delayed state feedback has found its applications to the design of dynamic absorbers, the linearization of nonlinear systems, the control of chaotic oscillators, etc. Most controlled mechanical systems with time delays can be modeled as the dynamic systems described by a set of ordinary differential equations with time delays.
This book aims at investigating PDE modeling and vibration control of some typical mechanical distributed parameter systems. Several control methods are proposed to realize stabilization of the closed-loop system with the help of mathematical tools and stability analysis methods. Besides, some common engineering problems, such as input and output constraints, are also involved in the control design. This book offers a comprehensive introduction of mechanical distributed parameter systems, including PDE modeling, controller design and stability analysis. The related fundamental mathematical tools and analytical approaches involving in the PDE modeling and controller are also provided, which broadens its reach to readers.
During the last decades, applications of dynamical analysis in advanced, often nonlinear, engineering systems have been evolved in a revolutionary way. In this context one can think of applications in aerospace engineering like satellites, in naval engineering like ship motion, in mechanical engineering like rotating machinery, vehicle systems, robots and biomechanics, and in civil engineering like earthquake dynamics and offshore technology. One could continue with this list for a long time. The application of advanced dynamics in the above fields has been possible due to the use of sophisticated computational techniques employing powerful concepts of nonlinear dynamics. These concepts have been and are being developed in mathematics, mechanics and physics. It should be remarked that careful experimental studies are vitally needed to establish the real existence and observability of the predicted dynamical phenomena. The interaction between nonlinear dynamics and nonlinear control in advanced engineering systems is becoming of increasing importance because of several reasons. Firstly, control strategies in nonlinear systems are used to obtain desired dynamic behaviour and improved reliability during operation, Applications include power plant rotating machinery, vehicle systems, robotics, etc. Terms like motion control, optimal control and adaptive control are used in this field of interest. Since mechanical and electronic components are often necessary to realize the desired action in practice, the engineers use the term mechatronics to indicate this field. If the desired dynamic behaviour is achieved by changing design variables (mostly called system parameters), one can think of fields like control of chaos.
During the last decades, applications of dynamical analysis in advanced, often nonlinear, engineering systems have been evolved in a revolutionary way. In this context one can think of applications in aerospace engineering like satellites, in naval engineering like ship motion, in mechanical engineering like rotating machinery, vehicle systems, robots and biomechanics, and in civil engineering like earthquake dynamics and offshore technology. One could continue with this list for a long time. The application of advanced dynamics in the above fields has been possible due to the use of sophisticated computational techniques employing powerful concepts of nonlinear dynamics. These concepts have been and are being developed in mathematics, mechanics and physics. It should be remarked that careful experimental studies are vitally needed to establish the real existence and observability of the predicted dynamical phenomena. The interaction between nonlinear dynamics and nonlinear control in advanced engineering systems is becoming of increasing importance because of several reasons. Firstly, control strategies in nonlinear systems are used to obtain desired dynamic behaviour and improved reliability during operation, Applications include power plant rotating machinery, vehicle systems, robotics, etc. Terms like motion control, optimal control and adaptive control are used in this field of interest. Since mechanical and electronic components are often necessary to realize the desired action in practice, the engineers use the term mechatronics to indicate this field. If the desired dynamic behaviour is achieved by changing design variables (mostly called system parameters), one can think of fields like control of chaos.
The book investigates fundamental issues in flexible manipulator systems, including distributed parameter modeling and boundary controller design. It presents theoretical explorations of several fundamental problems concerning the dynamics and control of these systems. By integrating fresh concepts and results to form a systematic approach to control, it also provides a basic theoretical framework. In turn, the book offers a comprehensive treatment of flexible manipulator systems, addressing topics ranging from related distributed parameter modeling and advanced boundary controller design for these systems with input constraint, to active control with output constraint. In brief, the book addresses dynamical analysis and control design for flexible manipulator systems. Though primarily intended for researchers and engineers in the control system and mechanical engineering community, it can also serve as supplemental reading on the modeling and control of flexible manipulator systems at the postgraduate level.