Download Free Dynamic Trip Modelling Book in PDF and EPUB Free Download. You can read online Dynamic Trip Modelling and write the review.

The thesis of this book is that there are one set of equations that can define any trip between an origin and destination. The idea originally came from work that I did when applying the hydrodynamic analogy to study congested traffic flows in 1981. However, I was disappointed to find out that much of the mathematical work had already been done decades earlier. When I looked for a new application, I realised that shopping centre demand could be like a longitudinal wave, governed by centre opening and closing times. Further, a solution to the differential equation was the gravity model and this suggested that time was somehow part of distance decay. This was published in 1985 and represented a different approach to spatial interaction modelling. The next step was to translate the abstract theory into something that could be tested empirically. To this end, I am grateful to my Ph. D supervisor, Professor Barry Garner who taught me that it is not sufficient just to have a theoretical model. This book is an outcome of this on-going quest to look at how the evolution of the model performs against real world data. This is a far more difficult process than numerical simulations, but the results have been more valuable to policy formulation, and closer to what I think is spatial science. The testing and application of the model required the compilation of shopping centre surveys and an Internet data set.
This book seeks to summarize our recent progress in dynamic trans portation network modeling. It concentrates on ideal dynamic network models based on actual travel times and their corresponding solution algorithms. In contrast, our first book DynamIc Urban Transportation Network Models - The ory and Implications for Intelligent Vehicle-Hzghway Systems (Springer-Verlag, 1994) focused on instantaneous dynamic network models. Comparing the two books, the major differences can be summarized as follows: 1. This book uses the variational inequality problem as the basic formulation approach and considers the optimal control problem as a subproblem for solution purposes. The former book used optimal control theory as the basic formulation approach, which caused critical problems in some circumstances. 2. This book focuses on ideal dynamic network models based on actual travel times. The former book focused on instantaneous dynamic network models based on currently prevailing travel times. 3. This book formulates a stochastic dynamic route choice model which can utilize any possible route choice distribution function instead of only the logit function. 4. This book reformulates the bilevel problem of combined departure time/ route choice as a one-level variational inequality. 5. Finally, a set of problems is provided for classroom use. In addition, this book offers comprehensive insights into the complexity and challenge of applying these dynamic network models to Intelligent Trans portation Systems (ITS). Nevertheless, the models in this text are not yet fully evaluated and are subject to revision based on future research.
Contains up-to-date and accessible material, plus all the necessary mathematical background. By verifying the asymmetric property of the dynamic link travel time function, while identifying the inflow, exit flow and number of vehicles on a physical link as three different states over time, the author adopts a variational inequality approach using one time-space link variable. This is then used to formulate problems with deterministic, stochastic and fuzzy traffic information. The book is thus of particular interest to those readers involved in aspects of model formulation, solution algorithm, equivalence analysis and numerical examples.
Intelligent Vehicle-Highway Systems are providing a welcome stimulus to research on dynamic urban transportation network models. This book presents a new generation of models for solving dynamic travel choice problems including traveler's destination choice, mode choice, departure/arrival time choice and route choice. These models are expected to function as off-line travel forecasting and evaluation tools, and eventually as on-line prediction and control models in advanced traveler information and traffic management systems. In addition to a rich set of new formulations and solution algorithms, the book provides a summary of the necessary mathematical background and concludes with a discussion of the requirements for model implementation.
This book presents a methodology for the development and computer implementation of dynamic models for transport process systems. Rather than developing the general equations of transport phenomena, it develops the equations required specifically for each new example application. These equations are generally of two types: ordinary differential equations (ODEs) and partial differential equations (PDEs) for which time is an independent variable. The computer-based methodology presented is general purpose and can be applied to most applications requiring the numerical integration of initial-value ODEs/PDEs. A set of approximately two hundred applications of ODEs and PDEs developed by the authors are listed in Appendix 8.
This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on traffic instabilities and model calibration/validation present these topics in a novel and systematic way. Finally, the theoretical framework is shown at work in selected applications such as traffic-state and travel-time estimation, intelligent transportation systems, traffic operations management, and a detailed physics-based model for fuel consumption and emissions.
Dynamic Modeling introduces an approach to modeling that makes it a more practical, intuitive endeavour. The book enables readers to convert their understanding of a phenomenon to a computer model, and then to run the model and let it yield the inevitable dynamic consequences built into the structure of the model. Part I provides an introduction to modeling dynamic systems, while Part II offers general methods for modeling. Parts III through to VIII then apply these methods to model real-world phenomena from chemistry, genetics, ecology, economics, and engineering. To develop and execute dynamic simulation models, Dynamic Modeling comes with STELLA II run- time software for Windows-based computers, as well as computer files of sample models used in the book. A clear, approachable introduction to the modeling process, of interest in any field where real problems can be illuminated by computer simulation.
From controlling disease outbreaks to predicting heart attacks, dynamic models are increasingly crucial for understanding biological processes. Many universities are starting undergraduate programs in computational biology to introduce students to this rapidly growing field. In Dynamic Models in Biology, the first text on dynamic models specifically written for undergraduate students in the biological sciences, ecologist Stephen Ellner and mathematician John Guckenheimer teach students how to understand, build, and use dynamic models in biology. Developed from a course taught by Ellner and Guckenheimer at Cornell University, the book is organized around biological applications, with mathematics and computing developed through case studies at the molecular, cellular, and population levels. The authors cover both simple analytic models--the sort usually found in mathematical biology texts--and the complex computational models now used by both biologists and mathematicians. Linked to a Web site with computer-lab materials and exercises, Dynamic Models in Biology is a major new introduction to dynamic models for students in the biological sciences, mathematics, and engineering.
This book presents the technical aspects of an economic model used to examine issues of global economic significance, such as the impact on the world economy of changes in trade and environmental policy. The book provides a number of studies using the model to examine trade reform, growth and investment, climate change, natural resources, technology, and demographic change and migration.
State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.