Download Free Dynamic Response Modeling Of The Inflated Tire Structure Book in PDF and EPUB Free Download. You can read online Dynamic Response Modeling Of The Inflated Tire Structure and write the review.

The performance of a road vehicle is directly related to the static and dynamic properties of tires, which provide support and control for vehicles and which must possess good durability under various tire-road interactions and loading conditions. The tire characteristics are inherently dependent on various structural and geometric parameters, the material properties of the individual layers of a tire and the loading conditions. In view of the simulation and analysis of tire response, in terms of deformation and stress fields, and vibration properties, extensive analytical studies had been conducted in the past based on the linear analysis of the multi-layered tire structure, assuming negligible shear interactions between the layers. In this dissertation, a nonlinear finite element model of a radial truck tire is developed based on its composite structural elements to analyze the various stress fields, with focus on the inter-ply shear stresses between the belt and carcass layers as functions of normal loads and inflation pressures. The model is validated through a comparison of the normal force-deflection characteristics and the contact patch geometry derived from the model with the laboratory-measured data in a qualitative sense. The tire model is used to conduct a parametric study on the shear interactions in the multiple layers under a wide range of loading conditions, to derive a more desirable set of structural parameters that can lead to lower values of maximum shear stresses within the loaded multi-layered tire structure. A polynomial function has been derived to estimate the two-dimensional tire-road contact pressure distribution as a function of the inflation pressure and the normal load. The tire model is further used to study the free-vibration behavior of the inflated tire structure. The influences of the individual structural parameters on the load and pressure-dependent natural frequencies of a radial truck tire are also investigated. The results show that the proposed finite element tire model based on adequately measured geometric and material properties of a tire structure can yield considerable benefits in the tire design and heavy vehicle performance.
Advances and Trends in Structures and Dynamics contains papers presented at the symposium on Advances and Trends in Structures and Dynamics held in Washington, D.C., on October 22-25, 1984. Separating 67 papers of the symposium as chapters, this book documents some of the major advances in the structures and dynamics discipline. The chapters are further organized into 13 parts. The first three parts explore the trends and advances in engineering software and hardware; numerical analysis and parallel algorithms; and finite element technology. Subsequent parts show computational strategies for nonlinear and fracture mechanics problems; mechanics of materials and structural theories; structural and dynamic stability; multidisciplinary and interaction problems; composite materials and structures; and optimization. Other chapters focus on random motion and dynamic response; tire modeling and contact problems; damping and control of spacecraft structures; and advanced structural applications.
Here is the second revised and updated edition of probably the most practical sourcebook on similarity methods and modeling techniques available. Written by leading authorities who incorporate many of the latest advances in the field, this new work maps out techniques for modeling as well as instrumentation and data analysis for an extremely wide array of problems in engineering dynamics. This practical reference uses experimental test data on various engineering problems demonstrating exactly how and why these similarity methods work. The problems involve spread of oil slicks, explosive cratering, car crashes, space vehicle heat exchange, explosive forming, and more. The spectrum of topics covered and number of examples are far greater than in other texts. Of particular importance are the dissimilar material modeling techniques which bring new versatility and freedom to the modeler in structural dynamics. The book also contains a clear, in-depth discussion of the theory underlying modeling and includes alternate methods for developing model laws. The work will undoubtedly prove invaluable to every professional involved in testing or design of dynamic experiments.