Download Free Dynamic Response And Deformation Characteristic Of Saturated Soft Clay Under Subway Vehicle Loading Book in PDF and EPUB Free Download. You can read online Dynamic Response And Deformation Characteristic Of Saturated Soft Clay Under Subway Vehicle Loading and write the review.

Involving several areas of geological engineering, geotechnical engineering and tunnel engineering, this book describes the soft soil deformation characteristics and dynamic responses induced by subway vibration load. Based on field monitoring and laboratory testing data, with both comprehensive micro-and macroanalysis, the authors present dynamic characteristics and deformation settlement of saturated soft clay surrounding subway tunnels using dynamic and static methodology. Mechanism of deformation, failure in microstructure of soft clay soil, dynamic response, macro deformation and settlement are all discussed and analyzed thoroughly and systematically. Some of the research findings in this book have been widely applied by large subway companies and will have broader application prospects in future. All the above make this book a valuable reference not only for technical engineers working in subway design or construction but also for advanced graduate students. Prof. Yiqun Tang works at the Department of Geotechnical Engineering, Tongji University, Shanghai, China.
This book is the sixth volume of the proceedings of the 4th GeoShanghai International Conference that was held on May 27 - 30, 2018. This volume, entitled “Advances in Soil Dynamics and Foundation Engineering”, covers the recent advances and technologies in soil dynamics and foundation engineering. These papers are grouped into four categories: (1) soil dynamics and earthquake engineering, (2) deep excavations and retaining structures, (3) shafts and deep foundations, and (4) offshore geotechnics. It presents the state-of-the-art theories, experiments, methodologies and findings in the related areas. The book may benefit researchers and scientists from the academic fields of soil dynamics and earthquake engineering, geotechnical engineering, geoenvironmental engineering, transportation engineering, geology, mining and energy, as well as practical engineers from the industry. Each of the papers included in this book received at least two positive peer reviews. The editors would like to express their sincerest appreciation to all of the anonymous reviewers all over the world, for their diligent work.
Involving several areas of geological engineering, geotechnical engineering and tunnel engineering, this book describes the soft soil deformation characteristics and dynamic responses induced by subway vibration load. Based on field monitoring and laboratory testing data, with both comprehensive micro-and macroanalysis, the authors present dynamic characteristics and deformation settlement of saturated soft clay surrounding subway tunnels using dynamic and static methodology. Mechanism of deformation, failure in microstructure of soft clay soil, dynamic response, macro deformation and settlement are all discussed and analyzed thoroughly and systematically. Some of the research findings in this book have been widely applied by large subway companies and will have broader application prospects in future. All the above make this book a valuable reference not only for technical engineers working in subway design or construction but also for advanced graduate students. Prof. Yiqun Tang works at the Department of Geotechnical Engineering, Tongji University, Shanghai, China.
This edited volume contains the best papers in the geo-engineering field accepted for presentation at the 1st Springer Conference of the Arabian Journal of Geosciences, Tunisia 2018. In addition, it includes 3 keynotes by international experts on the following topics: 1. A new three-dimensional rock mass strength criterion 2. New tools and techniques of remote sensing for geologic hazard assessment 3. Land subsidence induced by the engineering-environmental effects in Shanghai China The book is useful for readers who would like to get a broad coverage in geo-engineering. It contains 11 chapters covering the following main areas: (a) Applications in geo-environmental engineering including soil remediation, (b) Characterization of geo-materials using geological, geotechnical and geophysical techniques, (c) Soil improvement applications, (d) Soil behaviour under dynamic loading, (e) Recent studies on expansive soils, (f) Analytical and numerical modelling of various geo-structures, (g) Slope stability, (h) Landslides, (i) Subsidence studies and (j) Recent studies on various other types of geo-hazards.
This book addresses development laws for axial strain and excess pore water pressure in silty clay around subway shield tunnels before and after freezing-thawing when subjected to subway loading, as well as the effect of freezing-thawing on the dynamic parameters of silty clay, including the dynamic modulus and damping ratio, introducing readers to the design and construction of bypasses in subway tunnels with the artificial freezing method. On this basis, it then studies the microstructures of silty clay before and after freezing-thawing cyclic loading by means of scanning electron microscope tests and mercury intrusion porosimetry tests. Lastly, the book presents a numerical simulation of the dynamics of silty clay around subway tunnels before and after thawing. Given its scope, it offers a valuable reference guide for construction researchers and designers alike, as well as senior undergraduate and graduate students at colleges and universities.
Globally there is much interest in environmental vibrations, as caused by all forms of traffic, by construction activities and factory operations, and by other man-made sources. The focus is on prediction, control and mitigation to benefit our quality of life, and also to improve the operation of sensitive machines in high-tech production. The Japanese Geotechnical Society, the Architectural Institute of Japan, the Japanese Society of Civil Engineering and the Chinese Society for Vibration Engineering came together to organise this International Symposium on Environmental Vibrations at Okayama University, from September 20th to September 22nd, 2005. This book contains the proceedings of this meeting, recording the international exchange of experience, knowledge and research presented at the conference. Both invited and submitted papers are included, written by eminent academic professionals and engineering specialists. It includes topical areas of environmental vibrations, as well as referring to expertise and practices in related fields, these include: wave propagation in soils; soil dynamics; soil-structure dynamic interaction; field measurement of environmental vibration; monitoring of environmental vibrations; development of vibration mitigation measures; evaluation of environmental vibrations; effects of vibration on human perception; effects of vibration on high-precision machines. Both the research community and professionals in the field of environmental vibrations will find this an excellent resource.
This book gathers selected contributions in the field of civil and construction engineering, as presented by international researchers and engineers at the 2nd International Scientific Conference on Socio-Technical Construction and Civil Engineering (STCCE), held in Kazan, Russia on April 21-28 2021. The book covers a wide range of topics including building constructions and structures, bridges, roads and tunnels, building materials and products, construction management, energy efficiency and thermal protection of buildings, ventilation, air conditioning, gas supply and lighting in buildings, innovative and smart technologies in construction, sustainable development, transport system development. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations.
With the development of social and science, new requirements are put forward for geotechnical engineering. Advanced geotechnical techniques were proposed to solve the new challenges in geotechnical engineering. The articles presented in this volume aim to the new development of geotechnical engineering such as characterization of geomaterials, slope stability, application of environmental protection materials and some other geotechnical issues that are becoming quite relevant in today's world.