Download Free Dynamic Modeling Control And Simulation Of A Planar Five Link Bipedal Walking System Book in PDF and EPUB Free Download. You can read online Dynamic Modeling Control And Simulation Of A Planar Five Link Bipedal Walking System and write the review.

Bipedal locomotion is among the most difficult challenges in control engineering. Most books treat the subject from a quasi-static perspective, overlooking the hybrid nature of bipedal mechanics. Feedback Control of Dynamic Bipedal Robot Locomotion is the first book to present a comprehensive and mathematically sound treatment of feedback design for achieving stable, agile, and efficient locomotion in bipedal robots. In this unique and groundbreaking treatise, expert authors lead you systematically through every step of the process, including: Mathematical modeling of walking and running gaits in planar robots Analysis of periodic orbits in hybrid systems Design and analysis of feedback systems for achieving stable periodic motions Algorithms for synthesizing feedback controllers Detailed simulation examples Experimental implementations on two bipedal test beds The elegance of the authors' approach is evident in the marriage of control theory and mechanics, uniting control-based presentation and mathematical custom with a mechanics-based approach to the problem and computational rendering. Concrete examples and numerous illustrations complement and clarify the mathematical discussion. A supporting Web site offers links to videos of several experiments along with MATLAB® code for several of the models. This one-of-a-kind book builds a solid understanding of the theoretical and practical aspects of truly dynamic locomotion in planar bipedal robots.
This book presents various techniques to carry out the gait modeling, the gait patterns synthesis, and the control of biped robots. Some general information on the human walking, a presentation of the current experimental biped robots, and the application of walking bipeds are given. The modeling is based on the decomposition on a walking step into different sub-phases depending on the way each foot stands into contact on the ground. The robot design is dealt with according to the mass repartition and the choice of the actuators. Different ways to generate walking patterns are considered, such as passive walking and gait synthesis performed using optimization technique. Control based on the robot modeling, neural network methods, or intuitive approaches are presented. The unilaterality of contact is dealt with using on-line adaptation of the desired motion.
The model-based investigation of motions of anthropomorphic systems is an important interdisciplinary research topic involving specialists from many fields such as Robotics, Biomechanics, Physiology, Orthopedics, Psychology, Neurosciences, Sports, Computer Graphics and Applied Mathematics. This book presents a study of basic locomotion forms such as walking and running is of particular interest due to the high demand on dynamic coordination, actuator efficiency and balance control. Mathematical models and numerical simulation and optimization techniques are explained, in combination with experimental data, which can help to better understand the basic underlying mechanisms of these motions and to improve them. Example topics treated in this book are Modeling techniques for anthropomorphic bipedal walking systems Optimized walking motions for different objective functions Identification of objective functions from measurements Simulation and optimization approaches for humanoid robots Biologically inspired control algorithms for bipedal walking Generation and deformation of natural walking in computer graphics Imitation of human motions on humanoids Emotional body language during walking Simulation of biologically inspired actuators for bipedal walking machines Modeling and simulation techniques for the development of prostheses Functional electrical stimulation of walking.
Dr. Lester A. Gerhardt Professor and Chairman Electrical, Computer, and Systems Engineering Rensselaer Polytechnic Institute Troy, New York 12180 This book is a collection of papers on the subject of Robotics and Artificial Intelligence. Most of the papers contained herein were presented as part of the program of the NATO Advanced Study Institute held in June 1983 at Castel vecchio Pascoli, Italy on the same subject. Attendance at this two week Institute was by invitation only, drawing people internationally representing industry, government and the academic community worldwide. Many of the people in attendance, as well as those presenting papers, are recognized leaders in the field. In addition to the formal paper presentations, there were several informal work shops. These included a workshop on sensing, a workshop on educational methodology in the subject area, as examples. This book is an outgrowth and direct result of that Institute and includes the papers presented as well as a few others which were stimulated by that meeting. A special note is the paper entitled "State-of-the-Art and Predictions for Artificial Intelligence and Robotics" by Dr. R. Nagel which appears in the Introduction and Overview chapter of this book. This paper was originally developed as part of a study for the United States Army performed by the National Research Council of the National Academy of Science and published as part of a report entitled "Applications of Robotics and Artificial Intelligence to Reduce Risk and Improve Effectiveness" by National Academy Press in 1983.
Here for the first time in one book is a comprehensive and systematic approach to the dynamic modeling and control of biped locomotion robots. A survey is included of various approaches to the control of biped robots, and a new approach to the control of biped systems based on a complete dynamic model is presented in detail. The stability of complete biped system is presented for the first time as a highly nonlinear dynamic system. Also included is new software for the synthesis of a dynamically stable walk for arbitrary biped systems, presented here for the first time. A survey of various realizations of biped systems and numerous numerical examples are given. The reader is given a deep insight into the entire area of biped locomotion. The book covers all relevant approaches to the subject and gives the most complete account to date of dynamic modeling, control and realizations of biped systems.
Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as hardware of Multi-Locomotion Robotic system. It is useful for students and researchers in the field of robotics in general, bio-inspired robots, multi-modal locomotion, legged walking, motion control, and humanoid robots. Furthermore, it is also of interest for lecturers and engineers in practice building systems cooperating with humans.
Bipedal locomotion is among the most difficult challenges in control engineering. Most books treat the subject from a quasi-static perspective, overlooking the hybrid nature of bipedal mechanics. Feedback Control of Dynamic Bipedal Robot Locomotion is the first book to present a comprehensive and mathematically sound treatment of feedback design for achieving stable, agile, and efficient locomotion in bipedal robots. In this unique and groundbreaking treatise, expert authors lead you systematically through every step of the process, including: Mathematical modeling of walking and running gaits in planar robots Analysis of periodic orbits in hybrid systems Design and analysis of feedback systems for achieving stable periodic motions Algorithms for synthesizing feedback controllers Detailed simulation examples Experimental implementations on two bipedal test beds The elegance of the authors' approach is evident in the marriage of control theory and mechanics, uniting control-based presentation and mathematical custom with a mechanics-based approach to the problem and computational rendering. Concrete examples and numerous illustrations complement and clarify the mathematical discussion. A supporting Web site offers links to videos of several experiments along with MATLAB® code for several of the models. This one-of-a-kind book builds a solid understanding of the theoretical and practical aspects of truly dynamic locomotion in planar bipedal robots.
This book provides state-of-the-art scientific and engineering research findings and developments in the area of mobile robotics and associated support technologies. The book contains peer reviewed articles presented at the CLAWAR 2008 conference. Robots are no longer confined to industrial manufacturing environments with a great deal of interest being invested in the use of robots outside the factory environment. The CLAWAR conference series, established as a high profile international event, acts as a platform for the dissemination of research and development findings and supports such a trend to address the current interest in mobile robotics in meeting the needs of mankind in various sectors of the society. These include personal care, public health, and services in the domestic, public and industrial environments. The editors of the book have extensive research experience and publications in the area of robotics specifically in mobile robotics, and their experience is reflected in the careful editing of the contents in the book.
This book constitutes the research papers presented at the Joint 2101 & 2102 International Conference on Biometric ID Management and Multimodal Communication. BioID_MultiComm'09 is a joint International Conference organized cooperatively by COST Actions 2101 & 2102. COST 2101 Action is focused on "Biometrics for Identity Documents and Smart Cards (BIDS)", while COST 2102 Action is entitled "Cross-Modal Analysis of Verbal and Non-verbal Communication". The aim of COST 2101 is to investigate novel technologies for unsupervised multimodal biometric authentication systems using a new generation of biometrics-enabled identity documents and smart cards. COST 2102 is devoted to develop an advanced acoustical, perceptual and psychological analysis of verbal and non-verbal communication signals originating in spontaneous face-to-face interaction, in order to identify algorithms and automatic procedures capable of recognizing human emotional states.
By the dawn of the new millennium, robotics has undergone a major tra- formation in scope and dimensions. This expansion has been brought about bythematurityofthe?eldandtheadvancesinitsrelatedtechnologies.From a largely dominant industrial focus, robotics has been rapidly expanding into the challenges of the human world. The new generation of robots is expected to safely and dependably co-habitat with humans in homes, workplaces, and communities,providingsupportinservices,entertainment,education,heal- care, manufacturing, and assistance. Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across - verse researchareas and scienti?c disciplines, such as: biomechanics, haptics, neurosciences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are pr- ing an abundant source of stimulation and insights for the ?eld of robotics. It is indeed at the intersection of disciplines that the most striking advances happen. The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to bring, in a timely fashion, the latest advances and developments in robotics on the basis of their signi?cance and quality. It is our hope that the wider dissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing ?eld.