Download Free Dynamic Graphics Statistics Book in PDF and EPUB Free Download. You can read online Dynamic Graphics Statistics and write the review.

This book is about using interactive and dynamic plots on a computer screen as part of data exploration and modeling, both alone and as a partner with static graphics and non-graphical computational methods. The area of int- active and dynamic data visualization emerged within statistics as part of research on exploratory data analysis in the late 1960s, and it remains an active subject of research today, as its use in practice continues to grow. It now makes substantial contributions within computer science as well, as part of the growing ?elds of information visualization and data mining, especially visual data mining. The material in this book includes: • An introduction to data visualization, explaining how it di?ers from other types of visualization. • Adescriptionofourtoolboxofinteractiveanddynamicgraphicalmethods. • An approach for exploring missing values in data. • An explanation of the use of these tools in cluster analysis and supervised classi?cation. • An overview of additional material available on the web. • A description of the data used in the analyses and exercises. The book’s examples use the software R and GGobi. R (Ihaka & Gent- man 1996, RDevelopment CoreTeam2006) isafreesoftware environment for statistical computing and graphics; it is most often used from the command line, provides a wide variety of statistical methods, and includes high–quality staticgraphics.RaroseintheStatisticsDepartmentoftheUniversityofAu- land and is now developed and maintained by a global collaborative e?ort.
A visually intuitive approach to statistical data analysis Visual Statistics brings the most complex and advanced statistical methods within reach of those with little statistical training by using animated graphics of the data. Using ViSta: The Visual Statistics System-developed by Forrest Young and Pedro Valero-Mora and available free of charge on the Internet-students can easily create fully interactive visualizations from relevant mathematical statistics, promoting perceptual and cognitive understanding of the data's story. An emphasis is placed on a paradigm for understanding data that is visual, intuitive, geometric, and active, rather than one that relies on convoluted logic, heavy mathematics, systems of algebraic equations, or passive acceptance of results. A companion Web site complements the book by further demonstrating the concept of creating interactive and dynamic graphics. The book provides users with the opportunity to view the graphics in a dynamic way by illustrating how to analyze statistical data and explore the concepts of visual statistics. Visual Statistics addresses and features the following topics: * Why use dynamic graphics? * A history of statistical graphics * Visual statistics and the graphical user interface * Visual statistics and the scientific method * Character-based statistical interface objects * Graphics-based statistical interfaces * Visualization for exploring univariate data This is an excellent textbook for undergraduate courses in data analysis and regression, for students majoring or minoring in statistics, mathematics, science, engineering, and computer science, as well as for graduate-level courses in mathematics. The book is also ideal as a reference/self-study guide for engineers, scientists, and mathematicians. With contributions by highly regarded professionals in the field, Visual Statistics not only improves a student's understanding of statistics, but also builds confidence to overcome problems that may have previously been intimidating.
The essential characteristic of a dynamic graphical method is the direct manipulation of elements of a graph on a computer screen, which in high-performance implementations, the elements change virtually instantaneously on the screen. This book contains a collection of papers about dynamic graphics dating from the late 1960s to 1988. Although technology has advanced considerably, the fundamental ideas about basic graphical principles and data-analytic goals are still relevant today.
Written for the professional statistician or graduate statistics student, the primary objective of this book is to describe a system, based on the LISP language, for statistical computing and dynamic graphics to show how it can be used as an effective platform for a wide range of statistical computing tasks ranging from basic calculations to customizing dynamic graphs. In addition, it introduces object-oriented programming and graphics programming in a statistical context. The discussion of these ideas is based on the Lisp-Stat system; readers with access to such a system can reproduce the examples presented and use them as a basis for further experimentation and study.
In numerous computer applications there is a need of storing large sets of objects in such a way that some questions about those objects can be answered efficiently. Data structures that store such sets of objects can be either static (built for a fixed set of objects) or dynamic (insertions of new objects and deletions of existing objects can be performed). Especially for more complex searching problems as they arise in such fields as computational geometry, database design and computer graphics, only static data structures are available. This book aims at remedying this lack of flexibility by providing a number of general techniques for turning static data structures for searching problems into dynamic structures. Although the approach is basically theoretical, the techniques offered are often practically applicable. The book is written in such a way that it is readable for those who have some elementary knowledge of data structures and algorithms. Although this monograph was first published in 1983, it is still unique as a general treatment of methods for constructing dynamic data structures.
This third edition of Paul Murrell’s classic book on using R for graphics represents a major update, with a complete overhaul in focus and scope. It focuses primarily on the two core graphics packages in R - graphics and grid - and has a new section on integrating graphics. This section includes three new chapters: importing external images in to R; integrating the graphics and grid systems; and advanced SVG graphics. The emphasis in this third edition is on having the ability to produce detailed and customised graphics in a wide variety of formats, on being able to share and reuse those graphics, and on being able to integrate graphics from multiple systems. This book is aimed at all levels of R users. For people who are new to R, this book provides an overview of the graphics facilities, which is useful for understanding what to expect from R's graphics functions and how to modify or add to the output they produce. For intermediate-level R users, this book provides all of the information necessary to perform sophisticated customizations of plots produced in R. For advanced R users, this book contains vital information for producing coherent, reusable, and extensible graphics functions.
The theory of random graphs began in the late 1950s in several papers by Erdos and Renyi. In the late twentieth century, the notion of six degrees of separation, meaning that any two people on the planet can be connected by a short chain of people who know each other, inspired Strogatz and Watts to define the small world random graph in which each site is connected to k close neighbors, but also has long-range connections. At a similar time, it was observed in human social and sexual networks and on the Internet that the number of neighbors of an individual or computer has a power law distribution. This inspired Barabasi and Albert to define the preferential attachment model, which has these properties. These two papers have led to an explosion of research. The purpose of this book is to use a wide variety of mathematical argument to obtain insights into the properties of these graphs. A unique feature is the interest in the dynamics of process taking place on the graph in addition to their geometric properties, such as connectedness and diameter.
Visual communication through graphical and sign languages has long been conducted among human beings of different backgrounds and cultures, and in recent decades between human and machine. In today's digital world, visual information is typically encoded with various metaphors commonly used in daily life to facilitate rapid comprehension and easy analysis during the communication process. Visual information communication generally encompasses information visualization, graphical user-interfaces, visual analytics, visual languages and multi-media processing. It has been successfully employed in knowledge discovery, end-user programming, modeling, rapid systems prototyping, education, and design activities by people of many disciplines including architects, artists, children, engineers, and scientists. In addition, visual information is increasingly being used to facilitate human-human communication through the Internet and Web technology, and electronic mobile devices. This manuscript provides the cutting-edge techniques, approaches and the latest ongoing researches in the context of visual information communication. It is a collection of 24 chapters selected from more than 60 submissions to the VINCI'09 - 2009 Visual Information Communications International Conference, that is held in Sydney Australia, September 2009. These chapters were selected through a stringent review process to ensure their high standard in quality, significance and relevance. Each chapter was reviewed by at least two international Program Committee members of VINCI’09. The book covers a broad range of contents in five key sub-areas of visual information communication, including.
This book visualizes mortality dynamics in the Lexis diagram. While the standard approach of plotting death rates is also covered, the focus in this book is on the depiction of rates of mortality improvement over age and time. This rather novel approach offers a more intuitive understanding of the underlying dynamics, enabling readers to better understand whether period- or cohort-effects were instrumental for the development of mortality in a particular country. Besides maps for single countries, the book includes maps on the dynamics of selected causes of death in the United States, such as cardiovascular diseases or lung cancer. The book also features maps for age-specific contributions to the change in life expectancy, for cancer survival and for seasonality in mortality for selected causes of death in the United States. The book is accompanied by instructions on how to use the freely available R Software to produce these types of surface maps. Readers are encouraged to use the presented tools to visualize other demographic data or any event that can be measured by age and calendar time, allowing them to adapt the methods to their respective research interests. The intended audience is anyone who is interested in visualizing data by age and calendar time; no specialist knowledge is required. This book is open access under a CC BY license.
Master the Shiny web framework—and take your R skills to a whole new level. By letting you move beyond static reports, Shiny helps you create fully interactive web apps for data analyses. Users will be able to jump between datasets, explore different subsets or facets of the data, run models with parameter values of their choosing, customize visualizations, and much more. Hadley Wickham from RStudio shows data scientists, data analysts, statisticians, and scientific researchers with no knowledge of HTML, CSS, or JavaScript how to create rich web apps from R. This in-depth guide provides a learning path that you can follow with confidence, as you go from a Shiny beginner to an expert developer who can write large, complex apps that are maintainable and performant. Get started: Discover how the major pieces of a Shiny app fit together Put Shiny in action: Explore Shiny functionality with a focus on code samples, example apps, and useful techniques Master reactivity: Go deep into the theory and practice of reactive programming and examine reactive graph components Apply best practices: Examine useful techniques for making your Shiny apps work well in production